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Résumé

Le travail de recherche de cette thèse de doctorat s’inscrit dans le cadre du suivi médical
des patients atteints de démences liées à l’âge à l’aide des caméras videos portées par les
patients. L’idée est de fournir aux médecins un nouvel outil pour le diagnostic précoce de
démences liées à l’âge telles que la maladie d’Alzheimer. Plus précisément, les Activités
Instrumentales du Quotidien (IADL : Instrumental Activities of Daily Living en anglais)
doivent être indexées automatiquement dans les vidéos enregistrées par un dispositif d’en-
registrement portable.

Ces vidéos présentent des caractéristiques spécifiques comme de forts mouvements ou
de forts changements de luminosité. De plus, la tâche de reconnaissance visée est d’un
très haut niveau sémantique. Dans ce contexte difficile, la première étape d’analyse est la
définition d’un équivalent à la notion de « plan » dans les contenus vidéos édités. Nous
avons ainsi développé une méthode pour le partitionnement d’une vidéo tournée en continu
en termes de « points de vue » à partir du mouvement apparent.

Pour la reconnaissance des IADL, nous avons développé une solution selon le forma-
lisme des Modèles de Markov Cachés (MMC). Un MMC hiérarchique à deux niveaux a été
introduit, modélisant les activités sémantiques ou des états intermédiaires. Un ensemble
complexe de descripteurs (dynamiques, statiques, de bas niveau et de niveau intermédiaire)
a été exploité et les espaces de description joints optimaux ont été identifiés expérimenta-
lement.

Dans le cadre de descripteurs de niveau intermédiaire pour la reconnaissance d’activi-
tés nous nous sommes particulièrement intéressés aux objets sémantiques que la personne
manipule dans le champ de la caméra. Nous avons proposé un nouveau concept pour
la description d’objets ou d’images faisant usage des descripteurs locaux (SURF) et de
la structure topologique sous-jacente de graphes locaux. Une approche imbriquée pour
la construction des graphes où la même scène peut être décrite par plusieurs niveaux
de graphes avec un nombre de nœuds croissant a été introduite. Nous construisons ces
graphes par une triangulation de Delaunay sur des points SURF, préservant ainsi les
bonnes propriétés des descripteurs locaux c’est-à-dire leur invariance vis-à-vis de transfor-
mations affines dans le plan image telles qu’une rotation, une translation ou un changement
d’échelle.

Nous utilisons ces graphes descripteurs dans le cadre de l’approche Sacs-de-Mots-
Visuels. Le problème de définition d’une distance, ou dissimilarité, entre les graphes pour la
classification non supervisée et la reconnaissance est nécessairement soulevé. Nous propo-
sons une mesure de dissimilarité par le Noyau Dépendant du Contexte (Context-Dependent
Kernel : CDK) proposé par H. Sahbi et montrons sa relation avec la norme classique L2
lors de la comparaison de graphes triviaux (les points SURF).
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Pour la reconnaissance d’activités par MMC, les expériences sont conduites sur le
premier corpus au monde de vidéos avec caméra portée destiné à l’observation des d’IADL
et sur des bases de données publiques comme SIVAL et Caltech-101 pour la reconnaissance
d’objets.



Summary

The research of this PhD thesis is fulfilled in the context of wearable video monitoring of
patients with aged dementia. The idea is to provide a new tool to medical practitioners
for the early diagnosis of elderly dementia such as the Alzheimer disease. More precisely,
Instrumental Activities of Daily Living (IADL) have to be indexed in videos recorded with
a wearable recording device.

Such videos present specific characteristics i.e. strong motion or strong lighting changes.
Furthermore, the tackled recognition task is of a very strong semantics. In this difficult
context, the first step of analysis is to define an equivalent to the notion of “shots” in
edited videos. We therefore developed a method for partitioning continuous video streams
into viewpoints according to the observed motion in the image plane.

For the recognition of IADLs we developed a solution based on the formalism of Hidden
Markov Models (HMM). A hierarchical HMM with two levels modeling semantic activities
or intermediate states has been introduced. A complex set of features (dynamic, static,
low-level, mid-level) was proposed and the most effective description spaces were identified
experimentally.

In the mid-level features for activities recognition we focused on the semantic objects
the person manipulates in the camera view. We proposed a new concept for object/image
description using local features (SURF) and the underlying semi-local connected graphs.
We introduced a nested approach for graphs construction when the same scene can be
described by levels of graphs with increasing number of nodes. We build these graphs
with Delaunay triangulation on SURF points thus preserving good properties of local
features i.e. the invariance with regard to affine transformation of image plane: rotation,
translation and zoom.

We use the graph features in the Bag-of-Visual-Words framework. The problem of
distance or dissimilarity definition between graphs for clustering or recognition is obviously
arisen. We propose a dissimilarity measure based on the Context Dependent Kernel of
H. Sahbi and show its relation with the classical entry-wise norm when comparing trivial
graphs (SURF points).

The experiments are conducted on the first corpus in the world of wearable videos of
IADL for HMM based activities recognition, and on publicly available academic datasets
such as SIVAL and Caltech-101 for object recognition.
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Introduction

In this introductory part we will define the context of this PhD thesis. We will define
the medical aspect of the project in which this thesis is included and review related works
combining Information Technology and healthcare. We will then detail the specifities of
this project and describe the recording device and the characteristics of the recorded video
streams.
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Chapter 1

Introduction

1.1 Context

In the context of the aging of the European population, the development of home care
services and technologies is crucial in order to help seniors maintaining their independence
and stay at home longer and to help medical practitioners in their studies of aging and
age related dementia for the elaboration of adapted therapeutic treatments.

The large scale medical study PAQUID [PHA+08] [HPL+06] which has involved 3777
subjects over 15 years, has shown that the earliest signs of dementia can be observed as
functional difficulties in daily living activities up to 10 years before the clinical diagnostic
defined by the cognitive methods of reference [MDF+84] [Hac94]. The capabilities of a
patient to accomplish the activities of daily living (ADL) is estimated by the answers
given by the patient and their relatives to a survey [LB69] [BGCG+92]. This approach is
a first step towards the inclusion of ADL related symptoms in the elaboration of a patient’s
diagnosis. However, it captures an indirect observation of such symptoms. An observation
method at the patient’s home could potentially bring additional information that would
be valuable for the doctors in charge of the diagnosis to further refine their analysis. The
observation of the patients in their ecological and familiar environments at home would
indeed allow a correct interpretation of the signs that appear in the questionnaires.

In order to enable the doctors to observe and analyze one patient’s daily living, the
use of a camera worn by the patient is an original approach. The observations of daily
living activities would give an objective evaluation of potential difficulties in the activities
helping the doctor in his diagnosis, enabling the setup of adapted reeducation techniques
and the evaluation of therapeutic efficiency.

In this chapter we will first review how Information Technologies (IT) have been applied
to healthcare and specifically for aging population. We will then focus only on the few
projects which have used wearable videos for this purpose. We will finally detail the thesis
objectives and the outline of this PhD manuscript.

9
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1.2 Information Technologies for healthcare and the aging
population

The application of IT to healthcare often aims at monitoring the evolution of some char-
acteristics of the patient. In order to gather these characteristics, a setup of sensors has
to be defined. The sensors used in the applications of IT to healthcare can be divided in
two main categories: wearable sensors and stationary sensors.

Wearable sensors Most approaches of monitoring, as reviewed in [SCB+06], make use
of accelerometers. Accelerometry is a low-cost, flexible, and accurate method for the
analysis of posture and movement, with applications in fall detection and gait analysis.
The accelerometers have been used for ADL recognition in [HBS07] and [Huy08]. These
sensors require to be attached to several body parts such as wrists and knees [KSS03], to
capture the motion of the patient.

The project MIThrill [DSGP03] is a wearable computing platform which integrates
many sensors such as EKG (electrocardiography), EMG (electromyography), GSR (gal-
vanic skin response) and temperature electrodes. These approaches can capture a lot
of information on physical characteristics of the patient, but at the cost of a pervasive
equipment.

Stationary sensors Stationary sensors require an installation at the patient’s home,
hence the application to many patients would induce the equipment at a very large scale
with associated high costs of technical deployment. Stationary sensors can be cameras,
infrared or passive infrared sensors, which can detect the presence of the patient in a
specific area [CHD97]. We can also consider RFID tags as stationary sensors as they have
to be arranged on specific objects or locations [SHVLS08].

Another option is to create a smart environment where sensors are installed and let
the patient evolve in this environment [ZBTV07]. But this solution is hardly applicable
to ADL analysis as the patient would have to evolve in an unknown environment. This
will therefore add difficulties to the potential problems the patient may encounter while
executing ADL, thus making an evaluation of the capacities or troubles of the patient
much more ambiguous for doctors, as compared to an observation in an ecological and
familiar environment.

1.3 Wearable videos for healthcare

The use of a wearable camera for healthcare is rather original. One of the first project
involving the use of wearable imaging device is the SENSECAM project [HWB+06], which
aims to provide wearable image lifelog as a memory aid. The camera is worn around the
neck and captures pictures at several seconds of interval during the day. Finally, the events
of the day are summarized as automatic life-logs [BKW+07].

A wearable camera has also been used in the WearCam project [PNB+07], where the
camera is mounted on the head of children to help early diagnosis of autism. The automatic
analysis of the child gaze during the execution of specific movements is interpreted for the
diagnosis.
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1.4 Thesis objectives
In this thesis, we address the problem of the automatic indexing of ADL in the video
stream acquired from wearable cameras. This overall goal covers challenges on several
levels such as the high variability of the visual content, the expected high semantic level
of such analysis and the special nature of temporal sequence of images. We will therefore
pursue two main objectives: first, propose models and methods for structuring the video
stream into meaningful activities; second, propose approaches for extracting useful features
from the video to improve the semantic level of the analysis.

This PhD work is tighlty related to the IMMED project (ANR-09-BLAN-0165-02) in-
volving IT partners such as: the LaBRI1, the IMS2 and the IRIT3; and medical researchers
from the INSERM U8974.

1.5 Manuscript outline
We present here the organization of the manuscript. The chapter 2 briefly reviews the
project history and details the wearable recording device and the characteristics of the
video content recorded by this device when being worn by patients. This chapter concludes
the introduction part of the manuscript.

In the second part we will focus on the indexing of activities of daily living. In chapter 3,
we review the methods which have been proposed in the literature for the task of human
activities recognition and see which model may be adapted for our task. We will then
review the state-of-the-art in images and videos description in chapter 4, defining in our
context which descriptors may be helpful for the video content description. We then
analyze the properties of different models that may be used for the activities modeling
in the formalism of Hidden Markov Models in chapter 5. The proposed model and the
approaches for information extraction from the video content are introduced in chapter 6.
The experiments are detailed and analyzed in chapter 7. These experiments conclude the
second part of the manuscript.

The final part of this manuscript tackles the problem of object recognition with the
aim of recognizing objects of daily life in our videos. After reviewing the state-of-the-art in
object recognition in chapter 8, we will present our proposal in chapter 9. The experiments
for evaluating our proposed approach are presented in chapter 10 which ends this last part.

The final conclusions and perspectives of this work are finally presented.

1http://www.labri.fr
2http://www.ims-bordeaux.fr
3http://www.irit.fr/
4http://www.isped.u-bordeaux2.fr/
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Chapter 2

Video Monitoring with a Wearable
Camera

Introduction
The idea of this research from a medical point of view is to use the video recording in
the same way as an assessment such as MRI or radiography and to get this observations
in a stress-less and friendly environment for the patient, while at home. In a target
usage scenario the doctor will ask the paramedical staff to visit the patient with the
recording system. Then, the recorded video is automatically processed and indexed by
our method off-line. Finally, the doctor will use the video and indexes produced by our
analysis to navigate in it and search for the activities of interest. Visual analysis of the
latter serves to diagnose the disease or assess the evolution of the patient’s condition. The
typical recording scenario consists of two stages. A small bootstrap video for estimation of
patient’s localization in his home environment is recorded at the beginning of the recording
session. Indeed, when a paramedical assistant comes to visit a patient for the first time,
the patient “visits” his house when recording. Then, the patient is asked to realize some
of the activities which are a part of clinical evaluation protocols in assessing dementia
progress. These activities define the targeted events to be detected by our method.

We will here briefly review the evolution of the projects which have led to the IMMED
(Indexing Multimedia Data from Wearable Sensors for diagnostics and treatment of De-
mentia) project and describe the general processing flow principle. We will then detail the
evolution of the recording device towards the current prototype. We will then describe
the characteristics of the videos recorded from this device and present the annotation and
visualization tools.

2.1 Projects history
The research work on wearable video monitoring started with the exploratory project
PEPS S2TI CNRS “Monitoring Vidéo Embarqué”1. This project which was the first
in France to explore this problem, have enabled the definition of the constraints on the
recording device such as the set of possible positions for the camera, on the type of camera,

1Projet “Monitoring Vidéo Embarqué”: http://www.labri.fr/projet/AIV/projets/peps/
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Figure 2.2.1: Global processing flowchart.

especially the type of lens which should be used in order to observe efficiently the ADL,
and on the requirements for storage or transmission of the video stream. This short term
project (2007-2008) have lead to the definition of a first prototype [MSBP+08] presented
in section 2.3. This first prototype has shown the high acceptability of the device by the
patients.

The IMMED project ANR-09-BLAN-0165-02 started in late 2008 and is funded by the
ANR (Agence Nationale de la Recherche). The goal of this project is the development
and the validation of a complete system for the diagnosis and monitoring of dementia by
the use of a wearable camera. There are three main objectives to this project:

• The development of an audio and video recording device with ergonomic constraints
adapted to the medical application;

• The development of methods for the automatic analysis of such video content en-
abling an easy visualization by the medical practitioners;

• The validation of these technologies by the integration in a clinical study and the
definition of the first diagnosis guide adapted to this new paradigm.

The work of this thesis focuses on the second objective, the definition of methods for
automatically indexing the video content in terms of ADL.

2.2 Processing flow principle
The general principle of the system is presented in Figure 2.2.1. The activities of the
patient are acquired as audio and video data using a wearable device, as described in next
section, under the supervision of a medical assistant. This data is stored on a SD-card
which is transferred to the browsing station. A bootstrap annotation of the data is done
on the beginning of the video in order to facilitate the automatic analysis of the rest of the
video, see section 2.5.1. The video data is transferred through a secure connection to the
computation center that indexes the whole video in order to detect the events of interest.
The indexes are sent back to the browsing station to help a medical specialist visualize,
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see section 2.5.2, and analyze patients’ behavior and spot meaningful impairments in their
daily activities.

2.3 The video recording device

The video acquisition device should be easy to put on, should remain in the same position
even when the patient moves hectically, and it has to bring as less discomfort as possible
to an aged patient.

Using the first prototype, which was presented in [MSBP+08], the monitored person
was equipped with an onboard camera and microphone which were integrated into a bag
that is attached to the shoulder and the hip. Two setups have been tested in this project:
a first setup is located close to the manipulation area and a second one on the shoulder.
The video and audio signals were transmitted wirelessly to a base recording station via
an analog 2.4GHz transmitter within a 100m range, which is enough for capturing the
actions inside a house. The recording station received the analog signal, digitized and
compressed it through an acquisition card and stored the compressed video on a hard
drive. The quality of the video obtained from this process may be higly altered by the
wireless transmission. The noise can be induced by long distance transmission if the
patient moves far away from the station but could also depend on the material used for
the home construction as some materials may block the wireless signals.

In the current prototype, a vest was adapted to be the support of the camera. The
camera, the battery and the storage device are all merged in the same sensor which is a
GoPro2 camera. The camera is fixed near the shoulder of the patient with hook-and-loops
fasteners which allow the camera’s position to be adapted to the patient’s morphology.
This position combined with the wide angle lens of the camera offers a large view field
similar to the patient’s one. With the camera being light and the vest distributing the
weight on all the upper body, the acceptance of the device is very good. The volunteers
have felt no discomfort while wearing it and were able to perform their activities as if the
device was not present. An illustration of the device is given in Figure 2.3.1.

2.4 The video characteristics

The videos obtained from wearable cameras are quite different from the standard edited
videos on one hand and from video surveillance videos on the other hand. Indeed, edited
videos which are usually a target of video indexing methods have clean motion and are
assembled from video shots with discontinuities on the shot borders. In our case, the
video is recorded as a long continuous sequence, as in surveillance applications. The latter
deal with stationary cameras or with regular motions, such as PTZ. In a “wearable” video
the motion can be locally strong since the camera follows the ego-motion of the patient.
This strong motion may produce blur in frames, as shown in Figure 2.4.1a. Moreover,
the patient may face a light source, leading to sharp luminosity changes, as shown in
Figure 2.4.1b and 2.4.1c. The camera has a wide angle objective in order to capture a
large part of the patient’s environment.

2GoPro camera: http://www.gopro.com/
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Figure 2.3.1: The recording device (red circle) fixed on the vest adapted to be the support
of the camera

(a) Motion blur due to strong
motion.

(b) Low lighting while in dark
environment.

(c) High lighting while facing a
window.

Figure 2.4.1: Examples of frames acquired with the wearable camera.
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Figure 2.5.1: Example of an annotated video.

Furthermore, the variability of the data is very strong: the same activities are not
performed by different patients in the same environment as this is the case in “smart
homes” [ZBT+09].The patients evolve in their own home when recording.

2.5 Video annotation and visualization

In this section we will present the tool we provided to the medical partners of the project
for the annotation and visualization of the videos.

2.5.1 Video annotation

Video indexing methods require a learning phase before being able to automatically detect
localization (section 6.4.3.1) and recognize activities (chapter 6). This data are very much
patient dependent, as home environments do not contain a large amount of invariants.
Hence, a protocol has to be defined to annotate a minimum amount of data to allow the
learning phase. The difficulty in here is that the annotation interface will be used by a
medical practitioner who is not accustomed to advanced Information and Communication
Technology (ICT). Hence the interface prototype developed comprises the activities and
also localization elements. In the protocol, the medical assistant will annotate the first
minutes of the video which will contain a tour of the patient’s house. Therefore, the video
annotation tool (Figure 2.5.1) should be easy to use and crossplatform.
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Figure 2.5.2: The visualization tool.

2.5.2 Video visualization

The video footage at the patient’s house provides a long sequence shot. The sequence can
be of one hour up to half-a-day duration, which is too long for a medical practitioner to
watch entirely. Moreover, activities are of interest only when the autonomy of the patient
may be evaluated. Hence the navigation is proposed via pre-defined set of activities,
but also in a purely sequential manner to ensure all sequences of interest are viewed.
The visualization tool is presented in Figure 2.5.2. The methods used for the automatic
indexing of the activities will be presented in chapter 6.

2.6 Instrumental activities of daily living
The set of activities have been defined by the doctors. The taxonomy has evolved during
the project, we give the final taxonomy in Table 2.6.1. This set covers the activities
of interest for the doctors. However, all these activities might not have been executed
during the recordings and moreover should have been executed several times in order to
be used in the automatic analysis. The three levels of activities will not be used, only the
“General name” and “Goal” level will help us define the target activities for the automatic
recognition process.

Conclusion
In this chapter we have presented the project IMMED in which this work takes place. The
processing flow principle shows clearly how the methods presented in this manuscript will
be integrated in this context. The characteristics of the videos and the high semantic level
of the activities defines the difficult problem we will tackle in this manuscript.
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Table 2.6.1: Hierarchical taxonomy.
General name Goal Basic action

Complex machines

Coffee machine Use
Toaster Use

Microwave Use
Oven Turn on, Cook, Turn off
TV Turn on, Remote, Turn off

Gas cooker Turn on, Cook, Turn off
Dishwasher Detergent, Program, Fill, Empty

Washing machine Detergent, Program, Fill, Empty

Cleaning

Empty Use
Hoover Use
Broom Use
Shovel Use
Bed Make
Bin Use, Empty

Wash dishes Wash, Dry up, Storage
Wash clothes Hand-washed, Ordering, Hang out, Iron

Food
Drink
Eat
Cook Cut, Serve, Fill, Lay the table

Hygiene
Clothes Dress up, Button up, Lace up
Body Wash hands, Brush teeth, Dry hands

Aesthetic Perfume, Comb

Leisure

Gardening Water, Cut, Plant, Harvest
Pet Play, Stroke
Read

Watch TV
Computer Use
Knitting

Relationship Phone Answer, Use
Home visit

Moving Free Up/Down the stairs, Walk, Open door
With tools Get up from bed/chair, Helped walk

Medicine Medicine Fill/Use pillbox
Budget Budget Pay, Check change
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Conclusion

This introductory part has settled the context of this thesis. We have given the objectives
and described the specifities of the videos we are working with. The next part will focus
on the indexing of activities of daily living.

21
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Part II

Indexing of Activities of Daily
Living

23





Introduction

In this part we will review how human activities have been analyzed in the literature and
how the information of images or videos can be extracted. We will then detail specific
models for human activities modeling and proposed our method. Finally, we will evaluate
our approach on the videos we have recorded.

25



26



Chapter 3

Human Activities Recognition
Overview

Introduction

Human activities recognition has many applications, we can cite for example behavior
recognition, content-based video analysis, security and surveillance, interactive applica-
tions and environments, animation and synthesis. We will review in this chapter methods
which have been proposed for human activities recognition in a general scope and then
more specifically in the context of wearable videos.

3.1 Human activities modeling

The task of human activities modeling can be separated into two problems according to
the complexity of the activity being modeled. We will therefore make the distinction
between actions and activities:

• actions are simple motion patterns such as walking, bending, etc.

• activities are much more complex sequences of actions which may involve one or
several people such as ”meet and shake hands”.

In this section we will review methods proposed in the context of stationary cameras
as video-based activity recognition has been investigated much more extensively in this
context than in the wearable video context. This will allow us to define the first step
towards actions or activities modeling which is the extraction of low level features.

Low level features Since videos consist of a large amount or raw information in the
form of spatio-temporal pixel intensity variations, this raw information is not directly
relevant for the task of understanding and identifying activities occurring in the video.
We will review a few popular low-level features which are optical flow, point trajectories,
background subtracted blob or shape, and filter responses.

27



28 Chapter 3. Human Activities Recognition Overview

Optical flow The optical flow corresponds to the apparent motion of individual
pixels on the image plane. It is used as an approximation of the true physical motion.
The optical flow gives a description of the regions in the image which are moving and of
the corresponding velocity. The assumption of invariance of color or intensity of a pixel
during its displacement between one video frame and the next is often made. In practice,
the optical flow may suffer from noise and illumination changes. We refer to [BB95] for a
survey on optical flow computation techniques.

Point trajectories Trajectories of moving objects, e.g. humans, can been good fea-
tures to infer the corresponding activity. Rather than the raw trajectories in image plane,
alternative representations (less sensitive to translations, rotations and scale changes) may
be used, such as: trajectory velocities, spatio-temporal curvature, etc. A survey of these
approaches can be found in [CS95]. The authors of [CS95] oppose motion-based approach
to structure-based approach, stating that motion is more important.

Background subtracted blob and shape Background subtraction isolates the
moving parts of a scene by segmenting it into background and foreground. From this
binarization, the foreground may be treated like a blob considering the entire shape (a
description of the region being computed, such as moments [Hu62]) or only the shape
contour is taken into account [Fre61]. Finally, skeletal approaches represent the shape as
a set of 1D curves [BN78].

Filter responses Similarly to local interest points in images that we will introduce
in section 4.3, spatio-temporal filter responses can be defined. These features aim at
detecting regions that present strong variation both in the spatial and temporal domains,
these approaches will be detailed in section 4.4.

Actions modeling Methods for actions modeling can be categorized into three major
classes: non-parametric, volumetric and parametric time-series approaches. We will briefly
review the different characteristics and applications of these approaches.

Non-parametric approaches In non parametric methods, a set of features is ex-
tracted for each frame of the video and then matched to a template. The template can be
a 2D template as in [BD01], where after a background subtraction, the sequence of back-
ground subtracted blobs is aggregated into a single static image: the ”motion energy im-
age”. A ”motion history image” can be created by giving higher weights to blobs extracted
from newer frames. These templates are discriminative enough with regard to the recogni-
tion of simple action as ”sitting down”, ”bending”, ”crouching”, etc. The template can also
be a 3D template i.e. a spatio-temporal template. For example, in [BGS+05], Blank et al.
proposed a binary space-time volume built by stacking together background subtracted
blobs. Other examples of non-parametric approaches can be found in [TCSU08].

Volumetric approaches Volumetric approaches consider a video as a 3D volume of
pixel intensities. These approaches often rely on low-level features using spatio-temporal
filtering previously categorized as ”filter responses”. The volumetric approach presented
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in [KSH05], which relies on 3D filter banks and boosting will be detailed in 4.4. Volu-
metric features were used as an input for a fully automated deep model in [BMW+11].
This approach involves two steps; first, based on the extension of Convolutional Neural
Networks [LKF10] to 3D, spatio-temporal features are learned; second, a Recurrent Neural
Network [GSS03] classifier is trained for the task of human actions recognition. The re-
sults on the KTH data set show that the method outperforms most of the state-of-the-art
methods.

Parametric methods Previous approaches were defining a template model of action
and tried to match newly extracted features to this model. When addressing more complex
actions such as dancing, or different actions of a tennis game, these approaches are limited.
One of the most popular parametric model for such task is the Hidden Markov Model
(HMM), which has been applied to gait pattern recognition in [LS06] and tennis shots
recognition in [YOI92] for example. The HMMs will be detailed in chapter 5.

Activities modeling Modeling more complex activities requires higher level represen-
tation and reasoning methods. We can categorize these methods in three classes: graphical
models, syntactic approaches and knowledge and logic-based approaches.

Graphical models The most popular graphical models are Dynamic Belief Net-
works (DBNs) and Petri nets. DBNs encode complex conditional dependence relations
among several random variables. Usually, the structure of a DBN is provided by a domain
expert but this is often difficult in real-life systems which involve a very large number of
variables with complex interdependencies. Petri nets are bipartite graphs consisting of two
types of nodes: places and transitions. They are an intuitive tool for expressing complex
activities, particularly useful to model sequencing, concurrency, synchronization and re-
source sharing [DA94]. However, they are often built using a priori knowledge and cannot
usually deal with uncertainty of lower level modules i.e. a missing or false detection.

Syntactic approaches Inspired by language modeling, activities recognition can
be modeled by a set of production rules of lower level events. For example, context-
free grammar (CFG) were used in [RA06] for the recognition of human activities and
multiperson interactions. However, deterministic grammars cannot deal with errors at
lower levels. Stochastic grammars have been developed to cope with this limitation and
were for example applied to model a blackjack game with several participants in [ME02].

Knowledge and logic-based approaches Logic-based methods are intuitive as
they rely on the definition of logical rules describing the activities. These logic rules
require an explicit and extensive definition by a domain expert and do not address the
problem of uncertainty in the observation of lower levels. To overcome this limitation, a
combination of logical and probabilistic models was presented in [TD08]. The set of rules
in these approaches are defined empirically for each specific deployment. To facilitate
portability and interoperability between different systems, ontologies standardize the set
of rules associated to an activity. Ontologies have been specified for some domains of
visual surveillance such as meeting videos [HS04].
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3.2 Human activities recognition in egocentric videos
Only a few works have used wearable cameras for human activities recognition. One of
the first works, presented in [ASP99], was actually aiming at location recognition using
color histogram similarity. The wearable camera was attached to the front of a cap.
In [CMP00], Brian Clarkson et al. presented experiments on the recognition of a person’s
situation from a wearable camera and microphone. The types of situations considered in
these experiments are coarse locations (such as work, in a subway or in a grocery store)
and coarse events (such as in a conversation or walking down a busy street).

In [MM05], a shoulder-mounted wearable active camera was used for hand activity
recognition. A skin color classification was run as a pre-processing stage. Considering two
classes, skin and background, the corresponding model color histograms are built for the
U and V channels. The skin color is detected by computing the conditional probabilities
for each pixel to be assigned to one of the two models and then a spatial filter is applied to
remove high frequency noise. The events: single hand (HS), hands resting on table (HR),
handling a tennis ball (HB), hands operating a keyboard (HK) and hands operating a
calculator (HC); are detected if their probability according to the overall area of skin, the
object classification and spatial distribution, is greater than a threshold.

A Virtual Reality (VR) environment was used in [SPL+07] as a general framework to
understand how the execution of an activity is related to the situated space and the object
detection. The situated space is organized in four different subspaces: the world space
(all known objects), the observable space (objects can be seen), the manipulable space
(objects can be reached) and the object manipulation. The activities are cooking recipes,
eating or cleaning and are modeled by Hidden Markov Models (HMM).

More recently, an activity recognition method using low resolution wearable vision
was proposed in [SC09]. The vision section aims at recognizing manipulation motion.
The authors extract hand detection as the pixels corresponding to residual motion by
computing the difference between the current frame and the previous frame with motion
compensation. Then, a temporal template using only the red chrominance component is
used to model actions and the matching between temporal template is done by normalized
cross correlation. A Dynamic Bayesian Network (DBN) that infers locations, objects and
activities from a sequence of actions is introduced. The highest level of the DBN is modeled
by an HMM.

Conclusion
In this chapter, we have reviewed how human activities can be modeled in videos, start-
ing from the requirement of low-level features extraction to the definition of actions and
activities models. Most of the works we have cited were applied to stationary videos, but
several approaches presented are not applicable in our context of wearable videos. For
example, low-level features such as background subtracted blobs and shapes can be hardly
transposed to wearable videos as the background is almost constantly changing while the
patient moves. The specificities of our videos require the use of adapted descriptors, we
will explore popular descriptors in the literature in chapter 4.

Many models proposed for activities recognition integrate a priori knowledge to define
the structure of the model. In our context, it is really difficult to define a generic set
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of rules or sub-events to describe the IADLs. The next chapters will lead us to a model
adapted to the activities met in our applicative domain.
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Chapter 4

Image and Video Content
Description

Introduction

In order to analyze the content of images, state-of-the-art methods use features which
describe some specific characteristics of the image. In this section we review most of
them. They can be organized in the following categories: color, shape and local key-
points features. Finding an accurate description of the images is the first step towards
all image analysis related applications such as Content-Based Image Retrieval (CBIR),
image classification, object recognition or scene understanding. In this section we will
first describe the color features which are mainly part of the MPEG-7 standard. The
second part is dedicated to shape features which are specifically relevant for the task of
object recognition. The last category of features that we will introduce is the local key-
point features. They are widely used in recent approaches, giving the best results on many
different data sets for image classification.

4.1 Color features

Color information being an important part of human visual perception, computer vision
researchers have defined features which aim at capturing this information within few nu-
merical values. In this section, we present a set of color features and detail how each
of them describes the images and videos. Color features are quite effective, meaningful
and are pretty easy and fast to extract. In literature, they can be generally qualified as
statistical or spectral features.

Foreword on image color spaces

Before going further in the description of color features, it is necessary to define the notion
of color spaces. A color space is a mathematical model that enables the representation of
colors, usually as a tuple of color components. There exists several models of this type,
some motivated by the application background, some by the perceptual background of the
human vision system.
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(a) RGB (b) HSV (c) YUV (d) Luv

Figure 4.1.1: Graphical representation of different color spaces. Figures created with the
3D Color Inspector plugin for ImageJ.

The most commonly used color space is the RGB space, where a color is defined by
the additive amount of the primary colors Red, Green and Blue. The design of this color
space is closely related to the way the colors are reproduced on hardware devices such as
computer screens, televisions, etc. A classic representation of the RGB color space is a
cube, where each axis corresponds to the amount of red, green or blue components, see
Figure 4.1.1a.

The HSV (for Hue, Saturation, V alue) color space was designed in an attempt to
describe the perceptual color relationships more accurately than RGB, while remaining
simple. It is defined by a unique, non-linear mapping of the RGB space. The colors in HSV
are traditionally represented in a 3D-cone, see Figure 4.1.1b. The Hue takes values from 0
to 360 representing the color wheel. The Saturation represented by the distance from the
center of a circular cross-section of the cone, corresponds to the purity of the color (pure
red, green, yellow. . .). The Value component corresponds to the brightness/darkness of
the color. It is located on the color cone at the corresponding distance from the pointed
end of the cone. Saturation and Value usually take values in the interval [0, 1].

The emergence of the color in television has motivated the usage of color spaces that
separate the pixel luminance (brightness) and chrominance (color) values, such as YUV ,
see Figure 4.1.1c. Such a definition of the color enabled the cohabitation of black and
white and color for analog television. YUV is also the standard in video encoding, since
the chrominance component can be encoded using a reduced bandwidth without any loss
of perceptual quality.

Finally, some efforts have been made in order to build color spaces that attempt
perceptual uniformity. One such color space is Luv, see Figure 4.1.1d. Luv was designed so
that the perceptual color difference can be computed in the Luv space using the euclidean
distance.

4.1.1 Color histogram

Color histograms aim at representing the distribution of colors within the image or a region
of the image. Each bin of a histogram h represents the frequency of a color value within
the image or region of interest. It usually relies on a quantization of the color values,
which may differ from one color channel to another. Each bin of the color histogram in
one channel counts the number of pixels which color value, in the current channel, falls in
the range of the bin. The quantization of the different channels is usually chosen to give a
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finer resolution for the luminance channel of color spaces such as YUV and Luv. This can
be related to the human perception as there are much more rod cells, able to capture the
intensity of light but not color, than cone cells, dedicated to color. Histograms are invari-
ant under geometrical transformations within the region of the histogram computation.
Formally, given a color image I defined on a spatial domain Ω, see (4.1.1), the normalized
histogram hj models the marginal distribution of the values of channel j.

I : Ω ⊂ R2 −→ R3

x = (x, y) 7−→ (I1(x, y), I2(x, y), I3(x, y)) (4.1.1)

hj(i) = 1
|Ω|

∑
x∈Ω

δi(Ij(x)),
Nb∑
i=1

hj(i) = 1

where δi(Ij(x)) =
{

1 if lb(i) ≤ Ij(x) < ub(i)
0 otherwise

(4.1.2)

This is expressed in (4.1.2) where lb(i) and ub(i) are respectively the lower and upper
bounds of the bin i of the histogram and Nb is the total number of bins.

4.1.2 Color moments

Color moments are another way of representing the color distribution of an image or a
region of an image. The first order moment (4.1.3) is the mean which provides the average
value of the pixels of the image.

Ej = 1
|Ω|

∑
x∈Ω

Ij(x) (4.1.3)

The standard deviation (4.1.4) is a second order moment representing how far color values
of the distribution are spread out from each other. It is computed as the square root of
the variance of the distribution. The variance being computed as the mean of the squares
of the deviations of the color values from the first order moment.

σj =
√√√√ 1
|Ω|

∑
x∈Ω

(Ij(x)− Ej)2 (4.1.4)

For higher order moment, we introduce the definition of the kth central moment of channel
j in (4.1.5).

µkj = E
[
(Ij(x)− E [Ij(x)])k

]
(4.1.5)

The third order moment, named skewness (4.1.6), can capture the asymmetry degree of
the distribution. It will be null if the distribution is centered around the mean.
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sj = µ3j
σ3 (4.1.6)

The fourth order moment, called kurtosis (4.1.7), is a measure of «peakedness» of the
distribution or of the presence or absence of «heavy tails». This measure is merely used in
the context of texture analysis. The kurtosis of a normal distribution being 3, a measure
called «excess kurtosis» is defined as the kurtosis introduced in (4.1.7) minus 3, which
therefore gives a value of 0 for a normal distribution.

κj = µ4j
σ4 (4.1.7)

Using color moments, a color distribution can be represented in a very compact way select-
ing 3 moments for each of the 3 color channels, yielding a 9 dimensional vector [JLZZ02],
[LZF03].

4.1.3 Dominant Color Descriptor

The Dominant Color Descriptor (DCD) was introduced in the MPEG-7 standard [MSS02].
The DCD provides a compact representation of salient colors within the image or the region
considered. The DCD is defined as:

DCD = {(ci, pi, vi), s}, i = (1, 2, ..., N) (4.1.8)

Where N is the number of dominant colors, ci a vector of the color components values in a
specific color space. The percentage of pixels in the image corresponding to the color ci is
pi ∈ [0, ..., 1], with the constraint Σipi = 1. The color variance vi is an optional parameter.
The last parameter s is a single value representing the spatial coherency of colors in the
image. The most common use of the DCD is to retrieve images with similar colors in large
databases. As it can be seen, the DCD compresses the color histogram, but it does not
define the way the color domain has been quantized.

4.1.4 Color Layout Descriptor

The Color Layout Descriptor (CLD) is a compact representation of the spatial color dis-
tribution based on a partitioning of an image into 8x8 blocks. A representative color, for
example the average color, is computed for each block. Let us denote Am,n the average
color value of the block on themth row and nth column, and N the number of partitions on
each dimension (here N = 8). For each channel of the image, a Discrete Cosine Transform
(DCT) is then applied to this set of 64 values:

DCT (p, q) = 2
N
C(p)C(q)

N−1∑
m=0

N−1∑
n=0

Am,ncos

[(2m+ 1)pπ
2N

]
cos

[(2n+ 1)qπ
2N

]

for
{

0 ≤ p ≤ N − 1
0 ≤ q ≤ N − 1

, where C(x) =


1√
2 forx = 0

1 forx > 0
(4.1.9)
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A few low frequency coefficients of the DCT are then selected and quantized through
a zigzag-scanning pattern. The CLD is invariant to changes in resolution (scale) but not
invariant with respect to rotation or translation. Experiments conducted at the LaBRI,
for example within the TRECVID challenge, have shown the strong discriminative power
of the CLD.

We have briefly reviewed some of the mainly used color descriptors. We could also cite
some others, more descriptors are described in [MOVY01]. The Scalable Color Descriptor
is computed in the HSV color space. 16 bins are defined for Hue, 4 for Saturation and 4 for
Value. The Color Structure Descriptor counts the number of times a color is present while
scanning the image with a structuring element, typically a 8x8 square element. The color
features presented here are most of the time used as global descriptors but are efficient in
various contexts where color is the most important feature. However, they only describe
one of the characteristics of the image. For the application of object recognition, the use
of other kinds of information could be necessary. The next section presents a selection of
shape features.

4.2 Shape features

Shape description relies on the extraction of accurate contours of shapes within the image
or region of interest. An image segmentation is usually fulfilled as a pre-processing stage.
In order for the descriptor to be robust with regard to affine transformations of an object,
quasi perfect segmentation of shapes of interest is supposed. A correct image segmentation
is really hard to obtain from our videos. In our work, none of the shape descriptors would
be relevant. Nevertheless, we will briefly introduce here three representations of shapes
within images.

4.2.1 Curvature Scale Space

The main idea of the Curvature Scale Space (CSS) descriptor [MS98] is that a shape is well
described by its inflection points, the curvature zero-crossings points. The CSS descriptor
describes the evolution of the set of inflection points, when a progressive smoothing is
applied to the contour until it reaches convexity. The CSS descriptor is one of the shape
descriptors of the MPEG-7 standard.

4.2.2 Angular Radial Transform

The Angular Radial Transform (ART) is a moment-based description method adopted
as a region-based shape descriptor in the MPEG-7 standard. The ART can describe
complex objects that could be connected or disconnected region shapes. It uses a complex
orthogonal unitary transform of the unit disk that consists in the complete orthogonal
sinusoidal basis functions in polar coordinates. The ART coefficients, Fnm of order n and
m, are defined by:

Fnm =
ˆ

0

2π
ˆ

0

1Am(θ)Rn(ρ) f(ρ, θ)ρdρdθ (4.2.1)
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where f(ρ, θ) is the image to describe, transformed into polar coordinates, and:

Am(θ) = 1
2πexp(jmθ)

Rn(ρ) =
{

1 if n = 0
2cos(πnρ) if n 6= 0

(4.2.2)

The ART descriptor is defined as a set of normalized magnitudes of the set of Fnm
coefficients which make this descriptor invariant to rotation around the center. In the
MPEG-7 standard, twelve angular and three radial functions are used, yielding a descriptor
vector of 35 dimensions as the value for n = 0 and m = 0 is constant.

4.2.3 Shape context

The approach introduced in [BMP02] called «shape context» describes the shape as a set
of points sampled from the contours of the object. Then, for each point, a coarse histogram
in a log-polar space of all the others points positions is computed. The matching between
shapes is an instance of a square assignment (or weighted bipartite matching) problem
that can be solved by the Hungarian method [PS98] or by the more efficient algorithm
of [JV87].

4.2.4 Histogram of Oriented Gradients

Similarly to the shape context description, the Histogram of Oriented Gradients (HOG)
introduced in [DT05], focus on the description of the edges of an object. The main idea of
the HOG descriptors is to evaluate well-normalized histograms of image gradient orienta-
tions in a dense grid. The HOG descriptor is computed on a dense grid of uniformly spaced
cells and makes use of overlapping local contrast normalizations for improved performance.

The first step of the descriptor calculation is the gradient computation. The gradient is
estimated using point discrete derivative mask for each pixel. Defining local cells, such as a
3×3 neighborhood, each pixel casts a weighted vote (according to gradient magnitude) in
an orientation histogram. The histogram channels are evenly spread over 0 to 180 degrees
(for unsigned gradient) or 0 to 360 degrees (for signed gradient). For the application to
human detection, Dalal and Triggs [DT05] found that unsigned gradient with 9 histogram
channels performed the best. Introducing blocks which are a group of spatially connected
cells, a local normalization of the gradient strengths can be applied in order to cope with
changes in illumination and contrast.

The HOG descriptor has been widely applied for the task of human detection using
either SVM classifier [DT05] or cascade classifier [ZYCA06], and remains to this day a
very popular approach in the literature for this specific task.

Most color and shape descriptors introduced here aimed at describing the whole image
or at least a rather large region. The HOG descriptor is defined as a set of local histograms
of gradients computed for each cell of a dense grid. In image analysis, for the last few
years, the focus has been mainly set on local features presented in the next section.
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Figure 4.3.1: This figure shows the stages of keypoint selection. (a) The 233x189 pixel
original image. (b) The initial 832 keypoints locations at maxima and minima of the
difference-of-Gaussian function. Keypoints are displayed as vectors indicating scale, ori-
entation, and location. (c) After applying a threshold on minimum contrast, 729 keypoints
remain. (d) The final 536 keypoints that remain following an additional threshold on ratio
of principal curvatures. Image from [Low04].

4.3 Local features
Another category of descriptors for image content is the local descriptors category. The
main idea behind the use of local descriptors is to look for some areas which have really
specific local characteristics rather than trying to describe a whole region or image. The
local descriptors are computed at some locations in the image according to an interest
point detector. The interest point detector usually searches for strong changes in the two-
dimensional space of the image. This interest point is then described by a local feature.
The first local feature we will present is the Scale Invariant Feature Transform (SIFT)
descriptor proposed by Lowe in [Low04]. Similar works have been presented afterward,
improving for example the computational cost with the Speed-Up Robust Features (SURF)
in [BETVG08]. The following sections are overviews of SIFT and SURF descriptors, more
details are given in the Appendix.

4.3.1 SIFT

The SIFT features proposed by Lowe have many properties that make them suitable for
matching differing images of an object or scene. The features are invariant to image
scaling and rotation, and partially invariant to change in illumination and 3D camera
viewpoint. They are well localized in both the spatial and frequency domains, reducing
the probability of disruption by occlusion, clutter, or noise. A large number of features
can be extracted from typical images with efficient algorithms. In addition, the features
are highly distinctive, which allows a single feature to be correctly matched with high
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probability against a large database of features, providing a basis for object and scene
recognition. The four major steps of SIFT images features computation are the following:

1. Scale-space extrema detection: The first stage of computation is to build a scale
pyramid, obtained by convolutions of the image by variable-scale Gaussian, then to
search over all scales and image locations. It is implemented efficiently by using a
difference-of-Gaussian function to identify potential interest points that are invariant
to scale and orientation.

2. Keypoint localization and filtering: At each candidate location, a detailed
model is fit to determine location and scale. Keypoints are selected based on mea-
sures of their stability, i.e. unstable keypoints with low contrast or which are located
along an edge and may be poorly determined are filtered out. The different stages
of keypoint selection are shown in Figure 4.3.1.

3. Orientation assignment: One or more orientations are assigned to each key-
point location based on local image gradient directions. All future operations are
performed on image data that has been transformed according to the assigned ori-
entation, scale, and location for each feature, thereby providing invariance to these
transformations.

4. Keypoint descriptor: The local image gradients are measured at the selected scale
in the region around each keypoint. These are transformed into a representation that
permits significant levels of local shape distortion and change in illumination, see
Figure 4.3.2.

4.3.2 SURF

SIFT features have been efficiently used in many image related applications. However,
computing all the convolutions between images and the Gaussian filter at all the scales
may have a high computational cost. Using integral images, Herbet Bay et. al proposed
the Speed-Up Robust Features (SURF) in [BETVG08]. The four main ideas of the method
introduced by Bay are:

1. Integral images: Every entry of an integral image is the sum of all pixels values
contained in the rectangle between the origin and the current position.

2. Detection of keypoint: The detection of SURF keypoint relies on a Hessian-matrix
approximation where the second order Gaussian partial derivatives are computed
with box filters. Due to the use of box filters and integral images, Bay can apply
box filters of any size at exactly the same speed directly. Therefore, the scale space
is analyzed by up-scaling the filter size rather than iteratively reducing the image
size, see Figure 4.3.3.

3. Orientation assignment: SURF keypoint are assigned an orientation to ensure
rotation invariance. The dominant orientation is estimated by calculating the sum
of Haar Wavelet responses within a sliding orientation window.
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Figure 4.3.2: A keypoint descriptor is created by first computing the gradient magnitude
and orientation at each image sample point in a region around the keypoint location, as
shown on the left. These are weighted by a Gaussian window, indicated by the overlaid
circle. These samples are then accumulated into orientation histograms summarizing the
contents over 4x4 sub-regions, as shown on the right, with the length of each arrow cor-
responding to the sum of the gradient magnitudes near that direction within the region.
This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

Figure 4.3.3: Instead of iteratively reducing the image size (left), the use of integral images
allows the up-scaling of the filter at constant cost (right). Image from [BETVG08].
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Figure 4.3.4: Detail of the Graffiti scene showing the size of the oriented descriptor window
at different scales.

4. Keypoint description: In an oriented square window centered at the keypoint,
which is split up into 4x4 sub-regions, each sub-region yields a feature vector based
on the Haar wavelet responses.

4.4 Video descriptors

A video is often treated as a succession of frames i.e. image descriptors are applied to
each frame separately. However, this kind of approach discards the temporal component
of videos. The first works on video descriptors aim at extending efficient image descriptors
towards video description by integrating the temporal dimension in existing frameworks.

One way of extending the power of interest points is to use an efficient framework
applied to image and add a specific approach for video on top of it. This is the idea devel-
oped in [BBDBS09]. Ballan et al. have used the Bag-of-Visual-Words (BoVW) framework
to represent each frame. The BoVW framework is presented in 8.1. The main ideas are
to build a visual dictionary by clustering a large set of interest points; then to compute
a visual word frequency vector for an image; finally, the image comparison corresponds
to the computation of a distance between two histograms. The proposed method thus
represents video clips as phrases (strings), which are the concatenation of the visual word
frequency vectors of consecutive frames. The Needleman-Wunsch distance [NW70], which
performs a global alignment that accounts for the structure of strings, is used to compare
these phrases by defining a string kernel which is used in the Support Vector Machines
(SVM) framework introduced in [DWV99]. The evaluation on action recognition on foot-
ball videos and a subset of TRECVID 2005 contest clearly shows the good properties of the
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method compared to a baseline BoVW approach, and that the SVM classifier outperforms
a kNN classifier.

Other approaches have defined extensions of interest points detection including the
temporal component. The spatio-temporal interest points, introduced in [Lap05] by
Laptev, extends the idea of Harris and Förstner interest points operators and detect local
structures in space-time where the image values have significant local variations in both
space and time. As presented in the previous section, interest points detectors often rely
on the convolution of an image with a Gaussian kernel, here the Gaussian kernel has
independent spatial and temporal variances. Considering partial derivatives, the corners
are detected similarly as in the spatial domain. More precisely Laptev has introduced a
normalized spatio-temporal Laplace operator, and interest points are detected as extrema
over both spatial and temporal scales. The problem of scale adaption is solved by splitting
the space-time and scale dimensions, and iteratively optimizing over the subspaces until
convergence. The events detected by these spatio-temporal points are spatial corners, the
velocity vector of which is reversing direction. For example, it can be the moment when
hands touch each other when clapping, the extreme positions of a hand waving or when
legs are crossing in a gait pattern.

In [DRCB05], an approach defining «cuboids» is introduced. The detection is based
on a response function obtained by a convolution of frames with a 2D Gaussian smoothing
kernel and a Gabor function [GK95] applied temporally. The cuboid is extracted as a
spatio-temporally windowed pixel values at the local maxima of the response function, the
cuboid size being defined to contain most of the volume of data that has contributed to
the response function. The cuboid is represented by a flattened vector of the brightness
gradient in the three channels. Having a set of cuboids, a k-means clustering is applied
to define types of cuboids. A video clip is only characterized by the histogram if the
cuboids types present within it. The applications to three data sets: facial expressions,
mouse behavior and human activity show that the method performs better than other
state-of-the-art approaches (Efros et al. [EBMM03] and Zelnik-Manor and Irani [ZMI01]).

A real-time event detector using a cascade of filters based on volumetric features has
been presented in [KSH05]. The volumetric features are computed on dense optical flow
measurements, separated on its horizontal and vertical components. The features, which
calculate the volume or the volumetric difference in X, Y and time, are computed over a
volume window of 64×64 pixels by 40 frames in time. In fact, one million possible features
are used scaling down to a 4×4 pixels by 4 frames spatio-temporal volume. Extending the
idea of integral images used in [BETVG08], the authors introduced the «integral video»
structure which contains at location (x, y) and time t, the sum of all pixels at locations
less than or equal to (x, y, t), enabling fast computation of the features. These features are
then integrated in a cascaded classifier. A scale adaptive window constructed by varying
width and height, is used to scan the video with a classical sliding procedure. This may
yield multiple detections in small area in space-time which is used as an indicator of the
quality of detections: the more detections, the more likely the event.
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Conclusion
In this chapter, we have introduced a wide set of image and video descriptors. The first
descriptors gather information about the color distribution within an image. We have seen
specifically that the Color Layout Descriptor (CLD) gathers a general spatial organization
of the color in an image and shows robustness and efficiency in difficult tasks. The shape
features have been briefly introduced. Yet, it would need an efficient segmentation of the
image which is practically unfeasible in our context.

We have then introduced the two most popular local features, the interest points SIFT
and SURF. They have been widely used and have shown discriminative power in many
different tasks. However, the interest points can hardly be used directly for activities
recognition in our videos. It is necessary to define intermediate tasks that can be fulfilled
by using these features.

Finally, a set of features dedicated to video content description was introduced. How-
ever, most of them are applied to action recognition in videos from external viewpoint.
The detections often correspond to specific body parts in characteristic position, for ex-
ample for gait pattern detection or for hand waving recognition. In our first person view
recordings, it seems difficult to make full use of these descriptors as most of the body
remains mostly unseen.



Chapter 5

Hidden Markov Models:
Applications to Video Analysis

Introduction

In chapter 3 we presented various models for recognition of humans activities. Some of
them used efficiently Hidden Markov Models for this task. This chapter will first introduce
the Markov property and simple models such as Markov chains, then presents the classical
formulation of Hidden Markov Models (HMM) and more complex models using the HMM
framework. The HMMs have been applied to a wide variety of topics, in this chapter we
will mainly focus on applications to video analysis.

Many physical principles can be seen as deterministic processes. A deterministic pro-
cess always produces the same output from given starting conditions and same external
inputs. A stochastic process, or random process, is often described by a set of the different
possible states of the process. The changes of state of the system are called transitions,
and the probabilities associated with various state-changes are called transition probabili-
ties. The indeterminacy evolution of the process is described by the mean of the transition
probabilities between the different possible states of the process.

A very important property is the Markov property, from Andrey Markov [MN88] who
contributed tremendously to the theory of stochatstic processes. The Markov property
corresponds to the memoryless property of a stochastic process. A stochastic process
has the Markov property if the conditional probability distribution of future states of
the process, given the present state and the past states, depends only upon the present
state i.e how the current state was obtained is not important. This property is therefore
interesting in applications to video where events appear as a time sequence by enforcing
the locality in time of such events.

Let us denote Q = {q1, . . . , qn} the state space i.e. the n possible states of the process,
q(t) the selected state at time t and S = {s1, s2, . . .} be a random process in the discrete
space Q, the Markov property can be written as:

P (st = q(t)|st−1 = q(t− 1), . . . , so = q(0)) = P (st = q(t)|st−1 = q(t− 1)) (5.0.1)

45
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Markov Chains are discrete-time random processes endowed with the Markov prop-
erty. Given a finite state space Q defined as previously, the transition between state
qi and qj at time t can be denoted by pij(t) = P (st+1 = qj |st = qi). If this transi-
tion is time-independent, we call the Markov chain time-homogeneous and denote the
transition probability by pij . One example could be a simple weather model, let Q =
{q1 = sunny, q2 = rainy} be the set of possible states and the transition matrix A, where
pij is the probability that given the weather in current day is of type i, it will be followed
by a day of type j:

A =
(
p11 p12
p21 p22

)
=
(

0.9 0.1
0.5 0.5

)
. (5.0.2)

Based on current state st, which corresponds to the weather on current day, a Markov
chain can estimate the weather on next day according to the transition probabilities. The
transitions are only dependent on the current states, the weather on all previous days have
no influence at all. The Markov chains are applicable to a random variable which changes
through time in a context where the system state is fully observable. In this case the state
is directly observable, it is the weather on current day.

Some systems are only partially observable, the observations are related to the state
of the system but not sufficient to precisely determine it. In this case, the transitions
probabilities alone do not enable a correct representation of the system. Following previous
example, we want to establish the weather model of an unknown location. In this location,
consider we know someone, say Bob, who talks to us on the phone every day saying which
of the three following activities he has perform this day: «walk», «shop» or «clean». In
this case, the observations differ from the states: the observations are the activities while
the states are still the weather conditions. The current state, i.e. the weather of the
current day, being unkown, a Markov chain cannot be applied. We say that the states are
hidden. Modeling this situation can be done using a Hidden Markov Model (HMM) that
we will detail in section 5.1. Markov chains and HMM are generative models, i.e a full
probabilistic model of all variables. In the case of HMM, the variables are the transitions
probabilities between states and observations probabilities for each state. We say that a
state emits an observation, in our case the state «sunny» will induce a given proportion
of activities «walk», «shop» and «clean» which is different from the state «rainy». The
probability of emitting any observation for each state has to be included in the parametric
model. The HMM enables the estimation of these hidden parameters.

In video applications of the HMM, information is extracted from the analysis of images
in the form of descriptors. These descriptors constitute the observations of an HMM. The
objective is therefore to infer the state from the observations. In simple cases, the state
corresponds exactly to an event to be retrieve e.g. the weather condition. However, when
the events to be detected are complex, they can hardly be modeled by a single state. A
hierarchical approach can be applied to model simple events at bottom level, and more
and more complex events while going up the hierarchy. This aspect will be presented in
the Hierarchical Hidden Markov Models section 5.2. When using several descriptors, the
question of how to combine these different modalities arises. One approach is called the
Coupled Hidden Markov Models, see section 5.3, where each modality is treated separately
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in its own HMM. The Segmental Hidden Markov Models introduce the possibility to have
observations which are not always of the same duration and will be presented in section 5.4.

5.1 Classical hidden Markov models

The Hidden Markov Model (HMM) is as statistical model which was presented in [Rab89]
in the context of speech recognition. In this section, we will first introduce the HMM for-
malism. The practical use of a HMM model for data analysis considers the model itself
and its parameters, a temporal sequence of states corresponding to the evolution of the
process which is not observable and the set of observations that can be obtained from the
data. The main problems that have to be solved and the solutions to these problems will
be presented in the following sections. Finally, applications of the classical Hidden Markov
Models will be detailed in the last section.

5.1.1 Hidden Markov model formalism

States and transitions An HMM is composed ofm states: Q = {q1, ..., qm}. The state
at current time t is denoted st. Each state is connected to other states but not necessary
all of them. The transition matrix A = (aij) contains all the transitions probabilities
between all states of the HMM, aij is the transition probability between state qi and qj
and the diagonal of the matrix contains the loop probabilities. Formally:

A = {aij} where aij = P (st+1 = qj | st = qi), 1 ≤ i, j ≤ m (5.1.1)

which induces the stochastic contraint

m∑
j=1

aij = 1, 1 ≤ i ≤ m ∀i, j aij ≥ 0 (5.1.2)

Each state has a probability to start the observation sequence. These probabilities are
stored in a vector denoted π.

Observations HMM can be formulated for a discrete or continuous observation space.
In the discrete case, the observations are part of a known alphabet of sizeM , we can define
the alphabet E = {e1, ..., eM}. The emission probability matrix contains the probability
of each symbol ek to be emitted by each state qi. Formally:

B = {bi(ek)} where bi(ek) = P (ek(t) | st = qi),
1 ≤ i ≤ m
1 ≤ k ≤M (5.1.3)

with the stochastic contraint

M∑
k=1

bi(ek) = 1, 1 ≤ i ≤ m ∀i, k bi(ek) ≥ 0 (5.1.4)
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q1 q2 q3 q4

e1 e2 e3

a12

a13
a22

a23 a34

a44

a41

b1(e1)

b1(e2)
b1(e3)

b2(e1)
b2(e2)

b2(e3)

b3(e1)

b3(e2)
b3(e3) b4(e1)

b4(e2)

b4(e3)

Figure 5.1.1: Example of a HMM with 4 states and discrete observation space with an
alphabet of size 3.

The figure 5.1.1 is an illustration of a 4 states HMM defined over an alphabet of size
3.

In the continuous case, the observations are not a single symbol but a vector of values.
An observation model, taking the form of a probability density function has to be defined.
Obtain a proper model of the data with a single probability function may be difficult.
Therefore, a Mixture Model f is often defined as the probability density function:

f(o) =
K∑
k=1

wk fk(o) (5.1.5)

where fk is a component density of the mixture and wk is the weight of this component
(with the constraints 0 ≤ wk ≤ 1 and

∑
k wk = 1). For the case of Gaussian Mixture Model

(GMM), the probability density function of the observation of each state qi is defined by
the following:

bi(o) =
L∑
l=1
wil fl(o;µil,Σil), 1 ≤ i ≤ m (5.1.6)

wherefl(o;µil,Σil) = 1
|2πΣil|

1
2
exp(−1

2(o− µil)TΣ−1
il (o− µil)) (5.1.7)

where o is the observation vector, wil is the weight of component l for state qi, fl is a
density function, µil is the mean vector and Σil is the covariance matrix of model l for
state qi. The weights wil have to satisfy the constraints:

L∑
l=1
wil = 1, 1 ≤ i ≤ m (5.1.8)
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wil ≥ 0, 1 ≤ i ≤ m, 1 ≤ l ≤ L

Under these conditions, the probability density function is normalized:

∞̂

−∞

bi(x)dx = 1, 1 ≤ i ≤ m (5.1.9)

Typical problematics The complete HMM model is defined as: λ = (A,B, π) in the
discrete case, where the transition matrix is A, the initial probabilities of each state is
π and the observations probability matrix is B, or λ = (A, b, π) in the continuous case,
where b is the probability density function of the observations. Three main problems have
to be solved:

• computing the probability of an observation sequence given a model: P (o1 . . . on|λ)

• inferring the best state sequence given an observation sequence: argmax
q1...qn

P (s1 . . . sn =

q1 . . . qn|o1 . . . on, λ)

• estimating the model parameters that maximize the probability of observation of a
sequence: argmax

λ
P (o1 . . . on|λ)

5.1.2 Probability of an observation sequence

Having an observation sequence O = o1o2...oT and a HMM λ, how can we efficiently
compute the probability of the observation sequence given the model P (O|λ)? This can
be useful if we have several competing models and want to choose which model best
matches the given observations.

The full computation of all the possible state sequences is however unfeasible, the
calculation of P (O|λ) would involve 2T ×mT calculations. For example, this computation
for m = 10 (states of the HMM) and T = 100 (observations) would be on the order of
2× 100× 10100 ≈ 10102 computations.

Fortunately, a much more efficient approach exists: the forward-backward procedure
[BE67] [BS68]. This procedure involves the definition of two variables: the forward variable
αt(i) and the backward variable βt(i). The forward variable αt(i) is the probability of the
partial observation sequence from the start until time t and state qi at time t given the
model λ. The backward variable βt(i) is the probability of the partial observation sequence
from time t+ 1 to the end and state qi at time t given the model λ. Both these variables
are computed inductively. We will formally define αt(i) in (5.1.10) and its computation
and illustrate the induction within the computation, then provide the same information
for βt(i) in 5.1.14. An illustration of forward variable computation is given in Figure 5.1.2.

αt(i) = P (o1o2...ot, st = qi|λ) (5.1.10)
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q1

q2

qm−1

qj

qm

st+1st

αt(1)

αt(2)

αt(m− 1)

αt(m)

αt+1(j) =
[
m∑
i=1

αt(i)aij

]
bj(ot+1)

= P (o1o2...ot, st = qi|λ)

ot ot+1

t t+ 1

a1j

a2j

a(m−1)j

amj

Figure 5.1.2: Illustration of forward variable computation.

Initialization :
α1(i) = πibi(o1), 1 ≤ i ≤ m (5.1.11)

Induction :

αt+1(j) =
[
m∑
i=1

αt(i)aij

]
bj(ot+1), 1 ≤ j ≤ m

1 ≤ t ≤ T − 1 (5.1.12)

Termination :

P (O|λ) =
m∑
i=1
αT (i) (5.1.13)

Only the computation of the forward variable is necessary for computing P (O|λ). But,
since the computation of the backward variable is necessary for the two other problems
and is similar, we will present it here. An illustration of backward variable computation
is given in Figure 5.1.3.

βt(i) = P (ot+1ot+2...oT |st = qi, λ) (5.1.14)
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q1

q2

qm−1

qj

qm

st st+1

ot ot+1

βt+1(1)

βt+1(2)

βt+1(m− 1)

βt+1(m)

βt(j) =
m∑
i=1

ajibi(ot+1)βt+1(i)

= P (ot+1ot+2...oT |st = qj , λ)

t t+ 1

aj1

aj2

aj(m−1)

ajm

Figure 5.1.3: Illustration of backward variable computation.

Initialization :
βT (i) = 1, 1 5 i 5 m (5.1.15)

Induction :

βt(i) =
m∑
j=1

aijbj(ot+1)βt+1(j), 1 5 i 5 m
t = T − 1, T − 2, ..., 1 (5.1.16)

5.1.3 Best states sequence

When addressing the problem of finding the best state sequence the first issue is to give a
definition of such a sequence. The first solution is to define the sequence as the sequence
of states which are individually more likely at each time. The second solution is to use
the sequence of states which is globally more likely.

Computing states that are individually more likely The variable γt(i) defines the
probability to be in state qi at time t according to the sequence of observations O and the
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model λ:

γt(i) = P (st = qi|O, λ)= αt(i)βt(i)
P (O|λ) = αt(i)βt(i)

m∑
i=1

αt(i)βt(i)
(5.1.17)

The best state sequence can be defined by selecting at each time the most probable state:

st = argmax
1≤i≤m

[γt(i)], 1 ≤ t ≤ T (5.1.18)

The problem with this definition is that it is not directly related to the probability
of the estimated sequence considered globally. For instance, it could potentially give an
invalid sequence if one of the selected states has a zero probability transition to the next
best state.

Computing the global best state sequence To compute the best state sequence
using this second definition we use the Viterbi algorithm [Vit67],[FJ73]. To take into
account the sequence probability, we need to define the variable δt(i) which represents the
best score (the highest probability) of a path finishing at state qi at time t given the t first
observations:

δt(i) = max
s1,s2,...,st−1

P (s1s2...st−1, st = qi|o1o2...ot, λ) (5.1.19)

and by induction:

δt+1(i) = max
1≤j≤m

[δt(j)aji]× bi(ot+1) (5.1.20)

To complete the procedure to find the best state sequence, the best path which has
reached state qi at time t has to be stored for each time and each state. Thanks to the
Markov property, only the value of the previous state needs to be stored to complete the
procedure. Let us denote ψt(i) this value. The computation of all the values for all states
and all times is done by a recursive procedure:

Initialization :
δ1(i) = πibi(o1), 1 ≤ i ≤ m (5.1.21)

ψ1(i) = 0
Recursion :

δt(i) = max
1≤j≤m

[δt−1(j)aji]× bi(ot),
1 ≤ i ≤ m
2 ≤ t ≤ T (5.1.22)

ψt(i) = argmax
1≤j≤m

[δt−1(j)aji]
1 ≤ i ≤ m
2 ≤ t ≤ T

Termination :
P ∗ = max

1≤i≤m
[δT (i)], (5.1.23)

s∗T = argmax
1≤i≤m

[δT (i)]
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Finally, the best state sequence retrieval needs to follow the best path backwards:

s∗t = ψt+1(s∗t+1), t = T − 1, T − 2, ..., 1 (5.1.24)

An illustration of the Viterbi algorithm is given in Figure 5.1.4.
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s∗T = argmax
1≤i≤m

[δT (i)]

s∗t = ψt+1(q∗t+1)

o1 o2 o3 o4 o5

t = 1 t = 2 t = 3 t = 4 t = T = 5

Figure 5.1.4: Illustration of Viterbi algorithm.

5.1.4 Estimating the model parameters

The parameters of a HMM can be fixed if prior knowledge on the data exist. However,
in many applications, prior knowledge cannot be integrated for the parametrization of
the HMM. Therefore a learning procedure is needed. Adjusting the model parameters
to maximize the probability of an observation sequence is a difficult problem. There is
no optimal way for this estimation. However, an iterative procedure such as the Baum-
Welch method [BPSW70] (which is equivalent to the Expectation-Maximization (EM)
method [DLR77]) can enable the estimation of the HMM parameters to produce a model
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where P (O|λ) is locally maximized. To describe the Baum-Welsh procedure we need to
introduce another variable ξt(i, j) which represents the probability of being in state qi at
time t, and state qj at time t+ 1, given the model and the observations sequence:

ξt(i, j) = P (qt = qi, qt+1 = qi|O, λ) (5.1.25)

Using the previously defined forward and backward variables, we can write ξt(i, j) as
(5.1.26), where the numerator is P (qt = qi, qt+1 = qj , O|λ).

ξt(i, j) = αt(i)aijbj(Ot+1)βt+1(j)
P (O|λ) = αt(i)aijbj(Ot+1)βt+1(j)

m∑
i=1

m∑
j=1

αt(i)aijbj(Ot+1)βt+1(j)
(5.1.26)

The variable γt(i) representing the probability of being in state qi at time t defined in
(5.1.17) can be rewritten according to ξt(i, j):

γt(i) =
m∑
j=1

ξt(i, j) (5.1.27)

By summing γt(i) over time (excluding the final time T ), we obtain a quantity which
represents the expected number of transitions from state qi and by summing in the same
way ξt(i, j) we obtain the expected number of transitions from state qi to state qj . Using
these values, the parameters of the HMM can be re-estimated as follows for the discrete
case:

πi = expected number of times in state qi at time (t = 1) = γ1(i) (5.1.28)

aij = expected number of transitions from state qi to qj
expected number of transitions from state qi

(5.1.29)

=

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

bi(ek) = expected number of times in state qi observing ek
expected number of times in state qi

(5.1.30)

=

T∑
t=1

s.t. Ot=ek

γt(i)

T∑
t=1

γt(i)

In the continuous case, using GMM, the re-estimation of the observations model re-
quires the definition of an adapted γ variable. The variable γt(i, l) is the probability of
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being in state qi at time t with the lth mixture component accounting for Ot. It generalizes
the previous definition of γt(i) given for a discrete density:

γt(i, l) =

 αt(i)βt(i)
m∑
i=1
αt(i)βt(i)




wil f(O,µil,Σil)
L∑
l=1
wil f(O,µil,Σil)

 (5.1.31)

The parameters of the observation model can therefore by re-estimated by the following
rules:

wil =
∑T
t=1 γt(i, l)

T∑
t=1

L∑
l=1
γt(i, l)

(5.1.32)

µil =
∑T
t=1 γt(i, l) ·Ot
T∑
t=1
γt(i, l)

(5.1.33)

Σil =
∑T
t=1 γt(i, l) · (Ot − µil)(Ot − µil)T

T∑
t=1
γt(i, l)

(5.1.34)

These re-estimation rules can easily be interpreted. The weight wil is evaluated as the
ratio between the estimated number of times being in state qi with mixture l over the
total number of times being in state qi. The average and covariance of the lth component
of the ith state is recomputed by reweighting with γt(i, l).

The Baum-Welsh algorithm will produce a locally optimal model by iteratively running
the previous procedure using λ = (A,B, π) at each step instead of λ = (A,B, π). The
Baum-Welsh algorithm is equivalent to an EM procedure and produces at each step of
the process a set of HMM parameters which satisfies the stochastic constraints defined
in (5.1.1) and (5.1.3).

5.1.5 Hidden Markov models applications

Since their most known applications for speech recognition in the early 1970’s, HMMs
have been applied to many fields such as handwriting and gesture recognition [CKV08],
bio-informatics and video. The video applications of the HMMs have been first developed
for low-level temporal structuring like the method for video segmentation in [BW98]. The
aim of this work is to retrieve the shots within a video taking into account a number
of possible transitions as cut, fade, dissolve and camera motion like pan and zoom. J.S.
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Boreczky and L.D. Wilcox [BW98] use a luminance histogram distance, audio features
based on cepstral coefficients and motion features as observations of a HMM. The HMM
states represent the shot, the camera motion (pan and zoom) and the transitions between
shots (fade, cut and dissolve). The results clearly outperformed the baseline method based
on thresholding.

HMMs have also been widely applied for event classification in sports videos, since
many sports have well established rules giving highly structured videos. The events in
sports such as tennis or baseball are very constrained, and collecting a data-set of such
videos is easy as these sports are widely broadcasted. For example, Yamoto et al. [YOI92]
and later Petkovitc [PJZ01] et al. have applied HMMs for classifying tennis events into
one of 6 strokes.

Most of the works using HMMs for sports video analysis need to perform a shot seg-
mentation as a preprocessing step. But as presented by N. Harte, D. Lennon and A.
Kokaram in [HLK09], HMMs can perform simultaneously segmentation and recognition.
In this work, the data-set is composed of videos from a scientific study on the retainment
of primary reflexes from infancy in dyslexic children. Among fourteen exercises, the au-
thors focus on the recognition of one particular exercise in which the head of the child is
successively rotated to the left and to the right. The features are based on motion vectors
extracted from the video and the events modeled are rotation, the child pose setup, a
pause and no-rotation.

In the follow-up of HMM applications in structuring of complex video content, Hier-
archical HMM have been introduced. They will be presented in the following section.

5.2 Hierarchical hidden Markov models

The Hierarchical Hidden Markov Model (HHMM) makes possible the use of hierarchi-
cal structure within an HMM. In [FST98] the hierarchical structure is defined using the
bottom-level states as emitting states and higher-level states as internal states to model the
structure. In this formulation, a state is denoted by qdi (d ∈ {1, ..., D}) where i is the state
index and d is the hierarchy index i.e. the state level. The number of sub-states of an inter-
nal state qdi is denoted by |qdi |. The possible transitions are in this model both horizontal
and vertical. A transition matrix Aqdi = (aq

d
i
jk) is defined for the sub-states of each internal

state qdi , where a
qdi
jk = P (qd+1

j , qd+1
k ) is the probability of making a horizontal transition

from sub-states j and k of qdi . The vertical transitions Πqd = {πqd(qd+1
i )} = {P (qd+1

i |qd)}
can be seen as the probability of entering state qd+1

i from its parent state qd and is related
to the initial probabilities of the classical HMM as the probability that state qd will initially
activate the state qd+1

i . Each production state (state at lower level) is parametrized by an
observation model BqD . An example of Hierarchic HMM is presented in Figure 5.2.1. The
HHMMs were applied to activities recognition from movement trajectories in [NPVB05]
using shared structures. The results show improvement in recognition performance over
flat HMM. However, one of the main drawbacks of these fully hierarchical models is the
high number of parameters which induce the need of a large amount of learning data.

With regard to the complexity of some structures, specifically in complex content such
as video, the classical “flat” HMMs are limited. Introducing a hierarchy of HMMs is one
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Figure 5.2.1: Example of a Hierarchical HMM.

solution to deal with this limitation. The method presented in [KGG+03] combines audio
and visual cues for tennis video structuring. The video stream is automatically segmented
into shots by detecting cuts and dissolve transitions; thus the basic temporal unit is the
video shot. There are four principal view classes in a tennis video: global, medium,
close-up and audience. In a global view, most of the image corresponds to the tennis
court whereas close-up views are often a camera tracking a player. To define a mesure
permitting to identify a global view, the first step is the selection of a keyframe Kref

representative of a global view. Then the visual similarity measure between a keyframe
Kt and Kref , denoted v(Kt,Kref ) or just vt, uses two features: a vector of dominant colors
F and its spatial coherency C, and the activity A that reflects camera motion during a
shot. Formally, defining weights w1, w2 and w3 respectively for the spatial coherency, the
distance function and the activity, the visual similarity measure is defined as:

v(Kt,Kref ) = w1|Ct − Cref |+ w2 d(Ft, Fref ) + w3|At −Aref | (5.2.1)

The audio is represented by a binary vector describing which audio classes, among
speech, applause, ball hits, noise and music, are present in the shot. HMMs are used to
merge these audio-visual information and model each of these four events: first missed
serve, rally, replay, and break. Using only prior information about tennis content and
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editing rules, a higher-level HMM represents the hierarchical structure of a tennis match
i.e. the points, games and sets.

Y. A. Ivanov and A. F. Bobick have proposed in [IB00] a probablistic syntactic ap-
proach to the detection and recognition of temporally extended activities and interactions
between multiple agents. The main idea of this work is to divide the recognition problem
into two levels. Independent probabilistic event detectors propose candidate detections of
low-level features which are used as the input stream for a stochastic context-free grammar
parsing mechanism. A Stochastic Context-Free Grammar (SCFG) is a probabilistic exten-
sion of a Context-Free Grammar. This extension is implemented by adding a probability
measure to every production rule. The Context-Free property of the grammar means that
rules are conditionnaly independent. Therefore, the probability of generating a particular
complete derivation is the product of the probabilities of the rules involved in the deriva-
tion. In this method, low-level detectors with the ability of generating detection events
and some characterization of the detection confidence are needed. For the gesture recog-
nition task presented in this approach, HMMs are used as low-level event detectors. The
HMMs are used to modeled simple hand trajectories such as “up-down”, “left-right”, etc.
Each HMM picks out the part of the trajectory which is the most similar to the primitive
gesture it has been trained on, estimating the likelihood of the corresponding model. The
outputs of the HMMs are used to build a set of discrete events which are the input of the
parser. The parser attempts to find the most likely interpretation of the event set. The
approach is more efficient in domains where the atomic events can be clearly defined.

5.3 Coupled hidden Markov models

Many interesting systems are composed of multiple interacting processes. In the classical
HMMs framework, three classes of solutions could be used to deal with multiple process.
The Direct Identification Model is performed by one HMM using an observation stream
build as the concatenation of all the process streams [AOJS96],[AB95]. The second so-
lution, than can be named «Separated Identification Model», would process each stream
separately and then use expert rules, a combination of probabilities or fuzzy scores to
take the final decision [FD96]. The last solution would be to build a «Product Model»
of separate HMMs. The observation will be here again the concatenation of the separate
streams as in [Jou95].

The first attempts to build a Coupled HMM are the master-slave HMM proposed
in [BDMGO92]. Cognitive research has shown that both acoustic and articulatory in-
formation are important for the auditive recognition process for a human. Being in the
context of automatic speech recognition from videos, R. André-Obrecht et al., in [AOJS96],
focus on a master-slave HMM to fuse the acoustic and articulatory information. The labial
signals are composed of the three main characteristics of lip gestures: horizontal width,
vertical height and area of the internal lip opening. The acoustic is represented by 8
Mel Frequency scale Cepstrum Coefficients (MFCC) and the energy. The derivatives of
both labial and acoustic characteristics are computed. The authors compare two kinds
of models: the reference model Mref and the Master-Slave model Mart −Macous. In the
Mref model, a HMM model an elementary unit, called the pseudo-diphone, which is a
steady part of a phone or a transition between two phones. Each word of the application
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is described with these units.
The Master-Slave model Mart−Macous defines two different models. The master Mart

model for the articulatory analysis is composed of three states and three pdfs and takes
the labial coefficients as input. The slave model Macous is defined similarly as the Mref

model but its parameters (transition matrix and pdfs) are probabilistic functions of the
state ot the master model. The observations of the Macous model are only the acoustic
parameters. The experiments confirm the perception results as using both acoustic and
labial parameters increase the performance of the Mref model. The comparison between
the Mref model and the Master-Slave model Mart − Macous leads to two conclusions.
The Master-Slave model gives better results than the Mref model alone when using both
acoustic and labial parameters. However, when adding a “cocktail party” noise to the
acoustic signal, the performance of the Master-Slave model is still greater on the training
set but are poorer on the test set. The authors conclude that it is due to the higher
number of parameters in the Master-Slave model which would necessitate a larger learning
database to achieve good performances. This is one common problem when dealing with
more complex models than the classical HMM.

This approach of Master-Slave model is based on the idea of coupling several channels of
data. When modeling data coming from more than one channel, one can try to use a single
state variable while using a multivariate pdf on the output variables. But this approach
won’t model the interactions between the processes creating the different channels of data.
As it has been seen previously in the work from R. André-Obrecht et al., modeling this
interaction can be very important. This has been generalized as the Coupled Hidden
Markov Model (CHMM) in [BOP97].

The problem of coupling can lead to two main ideas: the source separation prob-
lem and the sensor fusion problem. An example for the source separation problem may
be the audio recording of voices from unrelated conversations at a cocktail party. The
sensor fusion problem is much more complex: in this situation multiple channels carry
complementary information about different components of a system. This is the case of
the previously presented analysis of speech using both audio and viusal features extracted
from lip-tracking. Using a dynamic programming method the computation of the forward
and backward variables in a CHMM of C chains can be achieved in O(TN2C). Since the
posterior probability mass of an HMM is not distributed evenly among all possible state se-
quences, Brand et al. introduce a N-heads dynamic programming approach in O(T (CN)2)
using only the best state sequences, avoiding computation cost along the low-probability
sequences. Considering a two-chain CHMM, each state sequence is double-tracked with
a head in one HMM and a sidekick in the opposite one. A sequence of {head,sidekick}
pairs is a «path» and the subsequence leading up to any particular {head,sidekick} pair
the «antecedent path». Therefore, for the computation of the forward-backward analysis,
at each step the aim is to obtain the MAP mass {head,sidekick} pairs given all antecedent
paths. This is done by choosing in each chain the MAP state given all antecedent paths,
this will be the sidekick for the heads in other chains. Then for each head, calculate the
new path posterior given antecedent paths and sidekicks. With full coupling of a large
number of HMMs the computation may have a high cost and the approximation of the
propose method will be weaker. However, the authors suggest that most of the systems
need to be coupled only through a limited set of pairwise interactions.

Nevertheless, the coupled HMMs require stronger computational overload compared
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to other HMMs formalisms. Furthermore, when the environment represents a complex
audio-visual scenery, it is difficult to define a priori master-slave or a limited set of pariwise
interactions. The early fusion in the observation space still remains seducing.

The experiments on real data presented in this paper are the recognition of T’ai Chi
Ch’uan gestures. Using a stereo vision blob-tracker for 3D hand-tracking for both hands,
the N-heads Coupled HMMs method yeild the highest quality models in the least time, with
robustness to initial conditions, good discrimination properties and good generalization to
novel examples. The model introduced by Brand et al. was used in [ORP98] for a video
surveillance task. In videos capturing a pedestrian scene, the aim is to detect interactions
such as «follow, reach and walk together», «approach, meet and go on», «approach, meet
and continue together», «change direction to meet, approach, meet and go together» and
«change direction to meet, approach, meet and go on separetely». In this task, CHMMs
clearly outperforms classical HMMs.

5.4 Segmental hidden Markov models

The Segmental Hidden Markov Models (SHMM) were introduced in [GY93]. The authors
aim to deal with one of the major drawback in the use of HMMs i.e. invalidity of the
«Independence Assumption». Therefore, they review some methods which have tried to
handle correlation between observation vectors i.e. to define a segment of observations.
We can for example cite the Variable Frame Rate (VFR) analysis [PP91]. The idea of
which is to assume that a segment is well represented by the first observation. Other
approaches, like the Stochastic Segment Model [OR89] have also been studied. All the
methods including the one introduced by [GY93] have either low impact on performances
or need a large number of parameters. Moreover, the estimation assuming no bounds
on segment length yeilds 2T − 1 possible segmentations to search over. When learning
the models parameters both the Viterbi algorithm and Baum-Welsh algorithm have a
complexity of O(T 2). This can be reduced by considering a maximum segment length
tmax to O(Ttmax).

The model in [ODK96] also addresses the problem of variable length sequences of
observation vectors by generalizing the previous segmental approaches. The fundamental
difference between SHMMs and HMMs is that in SHMMs a hidden state is associated
to a complete sequence of observations O1:t, called segment, instead of a unique feature
vector ot. Therefore, a general segment model defines a joint model for a random-length
sequence of observations generated by the hidden state qi of the SHMM:

p(ot, . . . , ot+l, l|i) = p(ot, . . . , ot+l|l, i)p(l|i) = bi,l(Ot:t+l)p(l|i) (5.4.1)

Hence, p(l|i) is a duration distribution, giving the likelihood of segment length l for
state qi and bi,l(Ot:t+l) is the emission probability distribution over a segment, conditioned
on the segment length and the hidden state.

From a generative point of view, SHMMs can be seen as a Markovian process where
a hidden state emits a sequence of observations, whose length is governed by a duration
model before transiting to another state. In the case of HMMs: at a given time the process
is in a given state and generates one observation symbol and then transits to another state.
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For SHMMs, at a given moment, the stochastic process enters a state and remains there
according to a probability given by the state duration model. A sequence of observations is
generated, instead of a single observation. Then, the process transits to a new state with a
transition probability, as in HMMs, and so on until the complete sequence of observations
is generated.

The application to video has been for example shown for tennis video parsing ap-
proach [DGG08] where, thanks to SHMMs, different modalities can be processed with their
native sampling rates and models. This has also been applied to baseball videos structur-
ing with a Multi-Channel Segmental Hidden Markov Model (MCSHMM) in [DF08] which
integrates both hierarchical and parallel structure within the model. A set of mid-level
semantic structures, as rudimentary semantic building blocks, is defined. They should be
frequent, repeatable and relatively well-defined. In this work, it corresponds to cameras
views and play types. The video mining problem can be defined as an inference problem.
The objective is to infer mid-level semantic structures from visual features. Once again,
despite the gain in performance, these models have a much higher computational cost and
number of parameters than the flat HMM.

Conclusion

In this chapter, we have introduced the Hidden Markov Model (HMM) formalism as
well as more complex models than the classical HMM. Each of the elaborate models
extends the possibility of the classical HMM in a specific direction. The Hierarchical
HMMs (HHMMs) aim at capturing more complex events that cannot be modeled by a
single state. The Coupled HMMs (CHMMs) are used for modeling multimodal events.
Finally, the Segmental HMMs (SHMMs) tackle the problem of modeling variable length
observations.

Each of these methods has shown interesting properties but this was not without
a significant additional cost in terms of number of parameters and computation. The
Multi-Channel Segmental Hidden Markov Model (MCSHMM) proposed in [DF08] is a
combination of all the elaborate models presented in this chapter. The Multi-Channel
HMMs can actually give multiple mid-level semantic labels but use the coupling approach
of the CHMM for exploring the interaction between the semantic structures.

In next chapter, we will specifically focus on the formalism used for indexing of instru-
mental activities in our videos, which is a hierarchical two level Hidden Markov Model
(HMM). We had to take into account both the complexity of the data we have to analyze
and the lack of large amount of data which makes very complex HMMs unsuitable. For
example, instead of using a SHMM we will define a pre-segmentation. Therefore, without
adding any complexity to the HMM model, we will not use frames as observations but
segments.
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Chapter 6

Design of a two-level Hierarchic
Hidden Markov Model for
Activities Segmentation

Introduction

In this chapter, we first introduce in 6.1 the proposed two-level Hierarhic Markov Model
which is the core of our video structuring method. The video structuring consists in
labeling units of the video as one of the IADL defined by the medical practitioners. In order
to define meaningful units of the video to be labeled, we will introduce a temporal motion-
based segmentation in 6.3. This segmentation yields segments that can be interpreted as
viewpoints. The video structuring relies on efficient descriptors of the video content, we
will present these descriptors in section 6.4.

6.1 The two-level structure

In order to take into account both the complexity of our data and the lack of large amount
of training data for learning purposes, we propose the following model. If we abstract our
problem of recognition of daily activities in the video to its simplest core, we can draw an
equivalence between an activity and a hidden state of an HMM. The connectivity of the
HMM can, at this level, be defined by the spatial constraints of the patient’s environment
when it is known. The easiest way is to design a fully connected HMM and train the
inherent state-transition probabilities from the labeled data. Unfortunately, the ADL we
consider are very much heterogeneous and often very complex, therefore the suggested
equivalence between an activity and a hidden state cannot hold together.

Hence, we propose a two-level Hierarchical HMM (HHMM). The activities that are
meaningful to the medical practitioners are encoded in the top-level HMM, the set of
possible states is thus defined accordingly. We also introduce a reject state “None” to
model non-meaningful observations from doctors’ point of view. Thus defined, the top-
level HMM contains the transitions between “semantic” activities including the reject class.
A bottom-level HHM models an activity with m non-semantic states, as in [SPL+07]. We
fix the parameter m as 3, 5 or 7 for ADL states and 1, 3, 5 or 9 for the reject class “None”

63
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in our experiments. The overall structure of the HMM is presented in Figure 6.1.1, with
3 states at the bottom level. Dashed circled states are non emitting states.

6.1.1 Top-level HMM

In this work, the actions of interest are the IADLs defined by the medical practitioners.
The set of activities evolves during the experiments in chapter 7, starting from a limited
set in the first experiments to the complete set of activities in the final “large scale”
experiment. The top-level HMM represents the relations between these actions. We denote
the set of states at this level as Q0 =

{
q0

1, . . . , q0
n0

}
and transitions matrix A0 = (a0

i,j),
where n0 is the number of activities. In this work, constraints were specified over the
transitions between these activities in the first experiment. But such restrictions are very
difficult to know a priori when addressing a larger set of activities and when analyzing
a large set of videos where the physical constraints of each patient’s house are different.
Moreover, the IADLs a patient is asked to fulfill depend very much on his condition and
their sequencing cannot be fixed for all patients in the same way. Hence, in the remaining
experiments we design the top level as a fully connected HMM on all the remaining
experiments. We consider equiprobable transitions from activities states to one another,
hence ∀i, j : a0

i,j = 1
n0

. The states of the top-level HMM are denoted in Figure 6.1.1 as
“Act” for the sake of simplicity.

6.1.2 Bottom-level HMM

For each activity in the top-level HMM a bottom-level HMM is defined with the set of
states Q1

i =
{
q1
i1 , . . . , q

1
ni1

}
with ni1 = 3, 5 or 7 for IADL states and ni1 = 3, 5, 7 or 9 states

for the reject class “none” in our experiments. The state transition matrices A1
i , for

i = 1, . . . , n0 also correspond to a fully connected HMM: a1
i k,l 6= 0, at initialization, for

k = 1, . . . , ni1 and l = 1, . . . , ni1. For the video stream not to be over-segmented the
loop probabilities a1

i k,k have to be initialized with greater values than other transition
probabilities: a1

i k,k > a1
i k,l ∀k 6= l, this will be explicitly defined in our experimental study,

see chapter 7. Activities are more likely to involve several successive observations rather
than just one, this explains the choice for such a higher loop probability. At the bottom
level, each non semantic state models the observation vector o by a Gaussian Mixture
Model (GMM) which has been introduced in section 5.1.1, see equation (5.1.7). The
GMM and the transitions matrix of all the bottom-level HMMs are learned using the
classical Baum Welsh algorithm [Rab89] with labeled data corresponding to each activity.

6.2 Implementation, training and recognition
HMM is a well studied subject for today, and a lot of implementations of HMMs are
available in open source software. In our implementation of the designed two-level HHMM,
we used the HTK library [YY94]. This probably is the mostly used software for HMMs.

For training the bottom-level HMMs we use the Baum-Welsh algorithm. We have
presented a detailed description of this algorithm in section 5.1.4. We consider the contin-
uous HMM to model observations probability with GMM, see (5.1.7). The observations
will be detailed in section 6.4. In the Baum-Welsh algorithm, an initialization is needed.
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Figure 6.1.1: The HHMM structure.
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The number of states m is fixed and will not be changed during the learning process. The
transition probabilities are initialized with greater values for loop probabilities as stated in
previous section, the exact values are precised in each experiment presented in chapter 7.
We used a fixed number of Gaussian components for the observation model. The HTK
Baum-Welsh training implementation may discard low-weight Gaussian component in a
mixture. Precisely, the component l of the GMM is discarded if the re-estimated weight
wil, see (5.1.32), is lower than a minimal “threshold” weight. The initialization of the
GMM can be done as a “flat-start” i.e. setting all means and variances to be equal to
the global mean and variance. However, since the Baum-Welsh would only find a local
optimum and that the amount of learning data in our context is not very large, a more
detailed initialization is possible by using iterative Viterbi alignments.

For the recognition, the Viterbi algorithm is used. The Viterbi alogrithm has been
detailed in section 5.1.3. The HTK implementation makes efficient use of the “token
passing” paradigm to implement a beam pruned Viterbi search. Details on the HTK
library can be found in the HTK Book [YEK+97].

6.3 Temporal pre-segmentation into “viewpoints”

The video structuring will rely on an analysis unit. We want to establish a minimal unity
of analysis which is more relevant than the video frames. The objective is to segment
the video into the different viewpoints that the patient provides by moving throughout
his home. In contrast to the work in [HWB+06] where the segmentation is based on a
fixed key-framing of the video, our goal is to use the motion of the patient as the criterion
for segmentation. This viewpoint segmentation of our long uninterrupted video sequences
may be considered as an equivalent to shots in edited video sequences.

We will present the designed motion based segmentation of the video. The viewpoints
based segmentation relies on the estimation of the global motion. Therefore we will first
define the complete affine model in 6.3.1. Using this model, the computation of corners
trajectories is presented in 6.3.2 and finally the definition of the segments is given in 6.3.3.

6.3.1 Global motion estimation

Since the camera is worn by the person, the global motion observed in image plane can be
called the ego-motion. We model the ego-motion by the first order complete affine model
and estimate it with a robust weighted least squares by the method reported in [KBP+05].
The parameters of (6.3.1) are computed from the motion vectors extracted from the com-
pressed video stream where one motion vector

−→
di = (dxi, dyi) is extracted per i-th image

block and is supposed to follow the model

(
dxi
dyi

)
=
(
a1
a4

)
+
(
a2 a3
a5 a6

)(
xi
yi

)
(6.3.1)

with (xi, yi) being the coordinates of a block center.
The models parameters (a1, a2, a3, a4, a5, a6) are stored in the column vector θ and are

computed by the following matrix product:
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θ = (a1, a2, a3, a4, a5, a6)T =
(
HTWH

)−1
HTWH (6.3.2)

Let N be the number of blocks, Z is the column vector of size 2N containing the
motion compensation vectors:

Z = (dx1, ..., dxN , dy1, ..., dyN )T (6.3.3)

Let H be the observations matrix of size 2N × 6:

H =



1 x1 y1 0 0 0
...

...
...

...
...

...
1 xN yN 0 0 0
0 0 0 1 x1 y1
...

...
...

...
...

...
0 0 0 1 xN yN


(6.3.4)

and W be the diagonal weights matrix defined by the Tukey operator [DBP01] of size
2N × 2N . The weights enable minimizing the errors that can arise for example on blocks
near the image border which often induce chaotic motion.

W =


w1 0 · · · 0 0
0 w2 · · · 0 0
...

...
...

...
...

0 0 · · · w2N−1 0
0 0 · · · 0 w2N

 (6.3.5)

6.3.2 Corners trajectories

To split the video stream into segments, we compute the trajectories of each corner using
the global motion estimation previously presented. As the motion model enables the
computation of the motion vector

−→
di = (dxi, dyi) of any point (xi, yi) between frame t

and t+ 1 we can write:

(
x

(t+1)
i

y
(t+1)
i

)
=
(
x

(t)
i

y
(t)
i

)
+
(
dx

(t)
i

dy
(t)
i

)
(6.3.6)

From (6.3.1), we can write the integrated motion in a matrix from as:

 x
(t+1)
i

y
(t+1)
i

1

 =

a2 + 1 a3 a1
a5 a6 + 1 a4
0 0 1


 x

(t)
i

y
(t)
i

1

 (6.3.7)
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(a) Corner trajectories while the person is static. (b) Corner trajectories while the person is moving.

Figure 6.3.1: Example of corners trajectories.

For each frame the distance between the initial and the current position of a corner is
calculated. We denote w as the image width and s as a threshold on the frame overlap rate.
A corner is considered as having reached an outbound position once it has had at least
once a distance greater than s×w from its initial position in the current segment. These
boundaries are represented by green and red (when the corner has reached an outbound
position) circles in Figure 6.3.1.

6.3.3 Definition of segments

Each segment Sk corresponds to a temporal interval Sk =
[
tmink , tmaxk

]
which aims to

represent a single “viewpoint”. This notion of viewpoint is clearly linked to the threshold
s, which defines the minimal proportion of an image which should be contained in all the
frames of the segment.
We define the following rules:

• a segment should contain 5 frames at minimum

• a segment should contain 1000 frames at maximum

• the end of the segment is the frame corresponding to the time when at least 3 corners
have reached, at least once, an outbound position. This condition is obvious from
simple geometrical consideration, e.g strong motion once on the left and then on the
right.

The key frame is then chosen as the temporal center of the segment, see examples in
Figure 6.3.2.

Hence, the proposed viewpoints based segmentation using the estimated motion model
serves for three goals:

• the segments define the analysis unit i.e. the minimal unit to be labelled by our
HHMM;
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Figure 6.3.2: An example of key frame (center) with the beginning (left) and ending (right)
frames of the segment.

• estimated motion parameters are used for the computation of dynamic features which
will be used in the HHMM description space;

• the key frames extracted from motion-segmented “viewpoints” are the basis for ex-
traction of spatial features which will also serve for the HHMM description space.

We will now focus on the definition of all features and the design of the global description
space candidates. The feature vectors of the description space will be the observations for
the HHMM.

6.4 Observations for hierarchical hidden Markov model

The description space aims to describe the different modalities that can be extracted from
the video stream. We first introduce descriptors that characterize the motion within the
video recorded in 6.4.1, then define the audio analysis in 6.4.2 and finally present static
descriptors that gather the context of the patient’s environment in 6.4.3. The fusion of all
these features will be presented in 6.4.4.

6.4.1 Motion description

The motion contains interesting information that can be used to characterize an activity.
Therefore, a set of descriptors for several properties of the motion will be defined. This
choice corresponds to the need to distinguish between various activities of a patient which
are naturally static (e.g. reading) or dynamic (e.g. hoovering).

6.4.1.1 Global and instant motion

The ego-motion is estimated by the global motion analysis presented in section 6.3.1. The
parameters a1 and a4 are the translation parameters in (6.3.1). We limit our analysis to
these parameters, since as in the case of wearable cameras, they better express the dy-
namics of the behavior, and pure affine deformation without any translation is practically
never observed.

The instant motion histogram is defined for a frame ft as the histogram of the log-
energy of each translation parameter Htpe, as expressed in (6.4.1), defining a step sh and
using a log scale. This histogram characterizes the instant motion; which is computed
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Figure 6.4.1: The number of cuts (black lines) is summed to define the value of each bin.
In this example: Hc[1]=0, Hc[2]=0, Hc[3]=1, Hc[4]=1, Hc[5]=2, Hc[6]=7.

for each frame. This feature is designed to distinguish between “static” activities e.g.
“knitting” and dynamic activities, such as “sweeping”.

Htpe,j [i] =
{

1 iff aj(t) ∈ Bi
0 otherwise

with the binsBi defined as

aj ∈ B1 iff log (a2
j ) < i× sh for i = 1

aj ∈ Bi iff (i− 1)× sh < log (a2
j ) < i× sh for i = 2 .. Ne − 1

aj ∈ BNe iff log (a2
j ) ≥ (i− 1)× sh for i = Ne

(6.4.1)

where j = 1, 4.
The feature for a video segment Sk is an averaged histogram on all its frames: Htpe,j , j =

1, 4 for horizontal and vertical translations parameters, respectively a1 and a4. The global
instant motion feature is the concatenation of both: Htpe =

(
Htpe,1, Htpe,4

)
.

Htpe,j [i] = Card{t∈Sk|aj(t)∈Bi}
t
max
k
−tmin
k

(6.4.2)

with the bins Bi defined as in (6.4.1), and j = 1, 4.
We denote Htpe(x) = Htpe,1 the histogram of the log-energy of horizontal translation,

and Htpe(y) = Htpe,4 the histogram of the energy of vertical translation observed in image
plane. The number of bins is chosen empirically and equally with regards to x and y,
Ne = 5, the threshold sh is chosen in such a way that the last bin corresponds to the
translation of the image width or height respectively.

6.4.1.2 Historic of global motion

Another element to distinguish static and dynamic activities is the motion history. On the
contrary to the instant motion, we design it to characterize long-term dynamic activities,
such as walking ahead, vacuum cleaning, etc. This is estimated by computing a “cut
histogram” Hc. We design it as a histogram of Nc bins. Each i-th bin contains the number
Hc(i) of cuts (according to the motion based segmentation presented in section 6.3) that
happened in the last 2i frames, see Figure 6.4.1. The number of bins Nc is defined as
8 in our experiments providing a history horizon of 256 frames, which represent almost
9 seconds of our 30 fps videos. Such a cut histogram is associated to each frame in the
video. The descriptor Hc associated to a segment is the average of the cut histograms of
the frames belonging to the segment.
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6.4.1.3 Local motion

All the previous motion descriptors focus on the global motion which is very important
as it provides a characterization of the ego-motion. However, the residual motion may
reveal additional information, such as the occurrence of a manual activity or the presence
of a moving object or a person in the visual field of the patient. In order to describe
the residual motion we introduce a descriptor which is computed on each block of a 4x4
grid segmenting the image. The value representing each block b of width N and height
M is computed, as presented in (6.4.3) as the Root Mean Square (RMS) of the difference
−−−→
∆dk,l = (∆dxk,l, ∆dyk,l)T between motion vector extracted from compressed video stream
and the one obtained from the estimated model (6.3.1). The residual motion descriptor
RM of the whole frame has therefore a dimensionality of 16.

RMb =

√∑k=N,l=M
k=1,l=1 (∆dx2

k,l, ∆dy2
k,l)

NM
(6.4.3)

6.4.2 Audio

The audio descriptors were developped by the IMMED project partners at IRIT. In this
section, we will breifly define the characteristics extracted from the audio stream.

The particularity of the contribution in the design of the audio description space con-
sists in the use of low-level audio descriptors. Indeed, in the home environment with
ambient TV audio track, noise produced by different objects the patient is manipulating,
conversations with the persons, etc, all are good indicators of the patient’s activity and its
location. In order to characterize the audio environment, different features are extracted.
Energy is used for silence detection. 4 Hz energy modulation and entropy modulation give
voicing information, being specific to the presence of speech. The number of segments
per second and the segment duration, resulting from a “Forward-Backward” divergence
algorithm [AO88], are used to find harmonic sound, like music. Then, a first set of fea-
tures is characteristic of these particular sounds: speech, music, noise, silence and periodic
sounds [PAO06].

Two other features are added and describe the water flow and the vacuum cleaner use.
This indexation method results from the audio research on the IMMED project and is
beyond the scope of this manuscript. Breifly, an original low level descriptor call spectral
cover is used in a system based on thresholds and allows to recognize some specific sound
events.

Finally, the complete set of audio descriptors is composed of 7 possible events: speech,
music, noise, silence, periodic sounds, water flow, vacuum cleaner. As the last two de-
scriptors were developed during the project, we used a subset of the complete set of audio
descriptors in some experiments.

6.4.3 Static descriptors

Static descriptors aim to characterize the instantaneous state of the patient within his/her
environment. The first static descriptor is the estimated localization, the second defines
the local spatial and color environment using the MPEG-7 [MSS02] descriptor “Color
Layout”.
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6.4.3.1 Localization

The localization descriptor was developped by the IMMED project partners at IMS. We
briefly define the main ideas of the proposed localization estimation method. The reader
is referred to [DMB11] for a full description of the approach.

The IMS partners use the method of Bag of Visual Words [LSP06] to represent an
image as a histogram of visual words. Low level visual information contained within
an image is captured using local features SURF [BETVG08] descriptors. Descriptors
are quantized into visual words using a pre-built vocabulary which is constructed in a
hierarchical manner [JT05]. The Bag of Words vector is built by counting the occurrence
of each visual word. Due to a rich visual content, the dimensionality of such histograms is
very high (we used a 1111 word dictionary in our context). Kernel PCA [SSM98] is used to
reduce these descriptors to several hundreds dimensions [BDLR+06] by embedding them
into the subspace of highest variance in the Reproducing Kernel Hilbert Space associated
to the kernel. The intersection kernel was used in the experiments. Initial non-linear
relationships in the original space are therefore represented by a simple scalar product
between the embeddings. A linear kernel SVM [Bur98] classifier is then applied on the
embeddings in a one-vs-all approach to produce the location vector, representing a 1 for
the detected class, and 0 for other classes. This estimation is used as a feature in the
activities recognition process.

We defined a set of 6 generic localization classes according to the different rooms
existing in the first video recordings available. The generic localizations we defined are:
“bathroom”, “bedroom”, “kitchen”, “living room”, “outside” and “other”. Therefore the
localization feature Loc will be built as an histogram of 6 bins where each bin contains the
output of the SVM classifier for the corresponding class. The descriptor Loc associated
to a segment is the average of the localization features of the frames belonging to the
segment.

Each room being specific for each patient, a localization bootstrap is recorded at
each patient’s house. This video footage is composed of a brief visit of the house and
is annotated by the medical partners according to the defined taxonomy of localizations.
The frames of this video are used to learn the model of each class.

6.4.3.2 Color Layout Descriptor

Using the extracted key frames representing each segment, a simple description of the local
spatial and color environment is expected. In this choice we seek for the global descriptors
which characterize the color of frames while still preserving some spatial information. The
MPEG-7 Color Layout Descriptor (CLD) presented in 4.1.4, proved to be a good compro-
mise for both of them [QBPM+08]. It is computed on each key frame and the classical
choice [MSS02] of selecting 6 parameters for the luminance and 3 for each chrominance
was adopted. This descriptor gives a coarse but yet discriminative visual summary of the
local environment. Examples of CLD computed on frames extracted from videos recording
with the first recording device prototype are presented in Figure (6.4.2).
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(a) Frame 1 (b) Frame 2

(c) CLD 1 (d) CLD 2

Figure 6.4.2: Frames extracted from our videos and corresponding CLD.

6.4.4 Descriptors fusion

Hence, for the description of the content recorded with wearable cameras we designed
three description subspaces : the “dynamic” subspace has 34 dimensions (5 for each Htpe,
8 for Hc and 16 for RM) and contains the descriptors D = (Htpe(x), Htpe(y), Hc, RM) ;
the “audio” subspace contains a maximum of k = 7 audio descriptors p = (p1, ..., pk) ;
the “static” subspace contains 18 coefficients, more precisely l = 12 CLD coefficients C =
(c1, ..., cl) and m = 6 localization coefficients L = (l1, ..., lm).
We design the global description space in an “early fusion” manner concatenating all de-
scriptors in an observation vector in Rn space with n = 59 dimensions when all descriptors
are used. Thus designed, the description space is inhomogeneous. We will study the com-
pleteness and redundancy of this space in a pure experimental way with regard to the
indexing of activities in chapter 7, by building a variety of possible partial fusions.

Conclusion
In this chapter we have introduced the proposed two-level Hierarchical Hidden Markov
Model (HHMM), where the top level defines the transitions between activities while each
bottom-level HMM models one activity. A bottom-level HMM is composed of m non-
semantic states, each of them relying on a Gaussian Mixture Model (GMM) for modeling
a part of the activity in the description space.

Since the video recording device is worn by the patient, the global motion in the image
plane can be seen as the ego-motion. We have presented a complete affine model for the
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estimation of the global motion and introduced a motion based temporal segmentation
using this model. The segments thus defined will be used as the analysis unit in our
experiments.

To describe the content of the video, we have introduced the set of 6 descriptors we
will use in the next chapter for the experiments. This set can be decomposed in 3 subsets:

• the ”dynamic” subset, containing the 3 motion descriptors. The first one Htpe char-
acterizes the strength on the global and instant motion, the second Hc describing
the long-term dynamic and finally the RM descriptor which captures the residual
motion.

• the ”audio” subset, containing the audio descriptors describing the 7 classes of events:
speech, music, noise, silence, periodic sounds, water flow and vacuum cleaner.

• the ”static” subset, containing 2 descriptors describing the visual environment of the
patient. The first descriptor is the Loc histogram which aims to define the possible
current location of the patients in the 6 classes: “bathroom”, “bedroom”, “kitchen”,
“living room”, “outside” and “other”. The second one being the CLD descriptor
capturing the spatial and color environment of the patient.

We defined description space candidates using an early fusion of some or all descriptors.
The observations for the HHMM will be feature vectors of these description spaces.

The next chapter presents the series of experiments we have conducted throughout
this thesis. We will investigate the possible bottom-level HMMs configurations, the con-
tribution and potential drawbacks of the proposed segmentation and the efficiency of the
proposed descriptors with regard to the task of activities recognition.



Chapter 7

Experiments on Activities
Recognition

Introduction

This chapter presents the results of the experiments we have conducted for the task of
activities recognition. We will first detail the video corpus in 7.1, and then introduce the
evaluation metrics in 7.2. The detail of four experiments and corresponding results are
presented in 7.3.

7.1 Video corpus

During the project several recording sessions have been conducted in increasing order of
complexity of both environment and activities and also of data volume. We only list here
the videos recorded with the final prototype, see section 2.3. This final prototype was used
to record videos in MPEG4/AVC format with a resolution of 1280x960 pixels at a frame
rate of 30fps. We can distinguish three types of recording session:

• Healthy volunteers recording in a laboratory environment. This corpus contains 13
videos recorded by 3 volunteers for a total of 2 hours of content. The activities
present in this corpus represent a small set of possible ADL such as “washing the
dishes”, “making coffee”, “reading”, “discuss” and “working on computer”.

• Healthy volunteers recording at home. This corpus contains 9 videos recorded by 7
volunteers for a total of 5 hours of content. The set of activities is more complete,
some ADL such as “cooking”, “hoovering” or “sweeping” which were not performed
it the laboratory corpus are present here.

• Patients recording at home. This corpus contains 27 videos recorded by 24 volunteers
for a total of 7 hours of content. The set of activities is the widest of all corpora,
it contains most of activities present in the doctors paper survey, for example “gar-
dening” and “teeth brushing” which were not present in previous corpora.

The characteristics of each corpus is listed in Table 7.1.1.

75
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Table 7.1.1: Corpora characteristics.
Recording session Number of videos Duration ActivitiesMin Max Avg Total
Healthy volun-
teers recording
in a laboratory
environment

13 3
min

17
min

7
min
50 s

1 h
42
min

“Discussing”, “Writing”,
“Washing the dishes”, “Making
coffee”, “Making tea”, “Look-
ing in the fridge”, “Reading”,
“Working on computer”, “Pho-
tocopying”, “Drying hands”

Healthy volunteers
recording at home

14 6
min

43
min
16 s

30
min
21 s

4 h
52
min

“Cooking”, “Moving around”,
“Hoovering”, “Sweeping”,
“Clearing the table”, “Making
the bed”, “Cleaning shovel”,
“Washing dishes”, “Cleaning
garbage”, “Body hygiene”,
“Aesthetic hygiene”, “Garden-
ing”, “Reading”, “Watching
TV”, “Using computer”, “Us-
ing coffee machine”, “Using
cooker”, “Using microwave”,
“Medecine”, “Using phone”,
“Home visit”

Patients recording
at home

30 12
min
51 s

33
min
14 s

22
min
18 s

6 h
36
min

“Food manual preparation”,
“Displacement free”, “Cleaning
hoover”, “Cleaning broom”,
“Cleaning clear”, “Clean-
ing bed”, “Cleaning shovel”,
“Cleaning dustbin”, “Clean-
ing dishesbyhand”, “Hygiene
body”, “Hygiene beauty”,
“Hygiene clothes”, “Leisure
gardening”, “Leisure reading”,
“Leisure watch”, “Leisure
computer”, “Complex ma-
chines coffee maker”, “Com-
plex machines gas cooker”,
“Complex machines washing
machine”, “Complex ma-
chines microwave”, “Medicines
medicines”, “Relationship
phone”, “Relationship home
visit”
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7.2 Evaluation metrics

We here describe the quality metrics for the evaluation of algorithms and methods. In our
system, each observation given as an entry of the HHMM is labeled according to one of
the activities. According to the label given manually, each of these automatic labeling can
be considered as positive or negative responses. When a classification method has to be
evaluated, this information is usually summarized in a confusion matrix, which is a form
of contingency table showing the differences between the true and false predictions for a
set of labeled examples (usually referred to as ground truth). An example of such a matrix
is given below in Table 7.2.1, where the predicate pred() denotes predicted negative (N)
or positive (P) label for a given class c and test() denotes the real label (ground truth).

Table 7.2.1: An example of confusion matrix for binary classification
test(c) = P test(c) = N

pred(c) = P True Positives (TP) False Positives (FP)
pred(c) = N False Negatives (FN) True Negatives (TN)
column totals cP cN

Given a classifier and an instance, there are four possible outcomes:

• if the instance is positive and it is classified as positive, it is counted as a true positive;

• if it is classified as negative, it is counted as a false negative;

• if the instance is negative and it is classified as negative, it is counted as a true
negative;

• if it is classified as positive, it is counted as a false positive.

Given a classifier and a set of instances (the test set), a two-by-two confusion matrix (also
called a contingency table) can be constructed representing the misclassifications of the set
of instances. This matrix forms the basis for many common metrics that are summarized
in Table 7.2.2.

Table 7.2.2: Common performance metrics calculated from a confusion matrix
FPrate = FP

cN
TPrate = TP

cP

precision = TP
TP+FP recall = TP

TP+FN

accuracy = TP+TN
cP+cN F − Score = 2

1/precision+1/recall

The precision/recall measures are often used in the literature. Precision decreases
when the number of false positives (FP) increases. Recall decreases as the number of
false negatives (FN) increases. This usually means that when recall increases precision
decreases. To counterbalance these two opposite tendencies, another metric, the so-called
F-measure or F-score was defined [VR79].
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Table 7.2.3: An example of confusion matrix for multiclass classification
test(A) = P test(B) = P test(C) = P

pred(A) = P TPA eBA eCA
pred(B) = P eAB TPB eCB
pred(C) = P eAC eBC TPC

The previous measures were introduced in the case of binary classifiers. However, in
our case each observation is classified by the HHMM according to one of learnt activi-
ties. Therefore, we now introduce similar measures in the context of multiclass classifiers.
Considering we have only 3 classes A, B and C for simplicity, we can define the confusion
matrix as in Table 7.2.3, where TPc is the number of true positive classifications for class
c and ecd is the number of misclassifications as class d when the ground truth was c.

We can now define the metrics recall, precision, F-score for one class in the multiclass
evaluation context. The false-positive predictions FPc of class c can be expressed as:

FPc =
∑
d 6=c

edc (7.2.1)

and the false-negative predictions FNc as:

FNc =
∑
d6=c

ecd (7.2.2)

The precision, recall and F-score measures are then computed similarly as in the binary
classification. The true-negative predictions TNc is the sum of all predictions where class
c does not appear either as ground truth or estimation:

TNc =
∑

d6=c,b6=c
edb +

∑
d6=c

TPd (7.2.3)

As the number of classes grows the true negative predictions number can grow easily
as well, this induces that a confusion matrix of per class accuracy will easily have high
values on the diagonal. We will therefore only present confusion matrix of precision, recall
and F-score. These measures are only valid when evaluated for each class separately, we
will therefore compute the mean precision, recall and F-score as a global measure. We will
also use the global accuracy which is defined as the total number of true positives over the
total number of observations Tot: 1

Tot

∑
c

TPc. The metrics precision, recall, F-score will

be presented by confusion matrices in the following evaluation of our analysis of semantic
activities in videos. Global accuracy will be given and the corresponding chronogram will
be plotted.

7.3 Model validation
In this work we conducted four series of experiments:



7.3. Model validation 79

1. Experiment on a video recording from a person at home with low semantic activities
and constraint transitions between activites. We also used ground truth on the
localization for learning purpose.

2. Experiment on a set of videos recorded in the lab from healthy volunteers with a
small set of semantic activities.

3. Real world application on a set of videos recorded in the home of different people
with a large number of activities.

4. Large scale application on a set of videos recordedin the home of more than thirty
different people with a large number of activities.

In these experiments the goals are:

1. To choose the optimal HMM architecture from a limited set of possible (1, 3, 5, 7)
non-semantic states.

2. To choose the optimal and evaluate the discriminative power of each description
space

3. To evaluate contribution and drawbacks of temporal pre-segmentation of videos

4. To evaluate system performance on available real world data.

In the follow up we will present these four series of experiments each time specifying the
goal of the experiment, the evaluation protocol, the training and test data sets and giving
analysis of the results. Let us denote Nm the number of possible states configuration, Nd

the number of descriptors that can be used and Nt the number of possible thresholds we
want to evaluate we have a total number of possible configuration Tc:

Tc = Nm ×Nt × (2Nd − 1)

If we consider Nm = 4, Nd = 6 and Nt = 19, i.e. a threshold evolving in the range
[0.05; 0.95] by steps of 0.05, the total number of configurations equals 4788. Therefore, in
each experiment we will only use a subset of this total number of configurations but the
influence of all parameters will be studied over the complete set of experiments.

7.3.1 Model validation on a single video recording

Goal of the experiment The goal of this first experiment was to validate the approach
for activities recognition on the first wearable video recording available. The recording
was done with the FishEye prototype, see section 2.3, at a patient’s home. The patient
was not asked to perform specific activities but was free to do any activities he would
usually do in his house. Therefore this video recording has less semantic activities.



80 Chapter 7. Experiments on Activities Recognition

Table 7.3.1: Configuration for best recognition results

Configuration Mean
F-score Mean recall Mean

precision
Global
accuracy

HtpeHcLoc
1 state HMMs

0.65 0.67 0.81 0.82

HtpeCLDLoc
5 states HMMs

0.59 0.68 0.62 0.73

HcLoc
1 state HMMs

0.61 0.65 0.87 0.81

Training and test data sets Since this was the only video available at that time we
had to train the model on data extracted from this same video. For learning purposes,
we use 10% of the total number of frames for each activity. These frames were used to
train the localization estimator and the activities HMMs. In this experiment, we used
the ground truth localization to train the HMMs. The other features Htpe, Hc and CLD
were extracted automatically. The features RM and Audio were not used. The temporal
segmentation was performed with a fixed threshold of 0.2 and the only constraint on
segment definition was that a segment should last at least 5 frames. The tests were
done over the segment observations. The description spaces where built by all possible
early fusions yeilding 4 description spaces of isolated descriptors, 6 description spaces of
2 descriptors, 4 description spaces of 3 descriptors and the single complete description
space of 4 descriptors. The dataset was composed of 3974 frames used for learning and
310 segments for recognition corresponding to 33 minutes of video.

Evaluation protocol We considered the number of elementary states m=1,3 or 5, for
each activity HMM. The initial looping probabilities A1

ii were set to 0.9 for 1 state HMM,
0.8 for 3 states HMM and to 0.7 for 5 states HMM. The 7 different activities were “moving
in home office”, “moving in kitchen”, “going up/down the stairs”, “moving outdoors”,
“moving in the living room”, “making coffee” and “working on computer”. The possible
transitions where limited according to the constraints of the patient’s house as presented in
Figure 7.3.1. The 7 different activities present in the video were annotated, enabling us to
evaluate the performances according to the measures: precision, recall, F-score and global
accuracy presented in 7.2. The best recognition performances are presented in Table 7.3.1
where configurations are presented in the left column, corresponding confusion matrices
are shown in Figure 7.3.2, lines and columns representing previously listed activities.

Figure 7.3.1: Constraints on transitions between activities according to the patient’s home.
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Figure 7.3.2: Confusion matrices for best recognition results
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Figure 7.3.3: Global accuracy as a function of description space for the 3 configurations
of HMMs studied (sorted by decreasing accuracy for 1 state results).
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Figure 7.3.4: Chronogram for best global accuracy result
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Analysis of results The results presented in the precision confusion matrix, Figure 7.3.2c,
are very good. The activities “moving in kitchen” and “working on computer” have a pre-
cision of 1. The activities “moving in home office”, “going up/down the stairs”, “moving
outdoors” and “moving in the living room” have high precision and low confusions which
only appears with activities which are usually preceding or following the target activ-
ity. The main confusion appears between “making coffee” and “moving in the kitchen”,
since these two activities are located in the same environment and involves similar visual
and motion description this is not surprising. The best results in terms of recall, see
Figure 7.3.2b, leads to similar conclusions. High recall values are obtained for activities
“Moving in home office”, “Moving outdoors” and “Working on computer”. The main con-
fusions appear once again between “making coffee” and “moving in the kitchen” and also
between “moving in the living room” and “going up/down the stairs”. The results in terms
of F-score show high confusion between “making coffee” and “moving in the kitchen” and
also between “working on computer” and “moving in home office”.

In Figure 7.3.3, we analyze the performances of the description spaces according to the
global accuracy measure for the 3 different HMM states configuration studied. The de-
scription spaces are ordered according to decreasing accuracy for the 1 state configuration.
The isolated descriptors perform the poorest, while the best performances are obtained
with complex fused description spaces. Interestingly, the description space corresponding
to a full fusion HtpeHcCLDLoc shows high performances for all HMM states configura-
tions. This confirms our intuition that the proposed descriptors are relevant for the task
and that early fusion is efficient for fusing several modalities. Moreover, the Figure 7.3.3
also shows that similar results are obtained for the 3 HMM states configurations studied.
The best results obtained for the single state configuration for the two description spaces
HtpeHcLoc and HcLoc are highly linked with the fact that the activities of this experiment
have low semantic and that the learning and testing process have been done on the same
video content. When working with more semantic activities and having the learning and
testing observations extracted from different videos, the single state configuration will be
strongly limited and therefore excluded from the possible HMMs configurations.

Conclusions and perspectives An overview of these results allows us to conclude that
the recognition performances are very good, this can be seen in the chronogram presented
in Figure 7.3.3 selected for the best global accuracy configuration. Most of the confusions
appear between classes which are usually following each other or are similarly represented
in our description space. This reveals that the visual description space is still limited to
distinguish activities which take place in the same environment and involve similar motion
activity. The activity “working on computer” is also specific because the temporal seg-
mentation gives only 2 segments in the video even if this activity represents thousands of
frames. The temporal segmentation has been refined in the following experiments accord-
ing to this result by specifying a maximal duration of a segment, as explained in 6.3.3.
This experiment shows that the approach is valid for the task of activities recognition.
The test on a single video was a proof of concept, therefore the next experiment will be
run on a mid-volume corpus.
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7.3.2 Experiments in a controlled environment

Goal of the experiment The recording at patients’ home involves several constraints
such as possible medical problems, patients and medical partners availability which in-
duce that it is difficult to obtain a large amount of data for evaluation. At the time of
this experiment, no rich corpus of data from wearable video settings has been publicly
released. We can reference the dataset [DHMV09] for a very limited task of behavior in
the kitchen, where subjects are cooking different recipes. Therefore, we have conducted a
set of recording session in a laboratory environment to enable evaluation of our method on
a larger scale corpus. This corpus of 2 hours of videos contains heterogeneous activities,
for this experiment we used only a part of it to ensure multiple occurrences of activities
for the supervised learning. The dataset used for this experiment comprises 6 videos shot
in the same laboratory environment, containing a total of 81435 frames which represent
more than 45 minutes. In these videos 6 activities of interest appear: “working on com-
puter”, “reading”, “making tea”, “making coffee”, “washing the dishes”, “discussing” and
we added a reject class called “NR”, for “not relevant”. It represents all the moments which
do not contain any of the activities of interest. The activities of interest are a subset of
those present in the survey the doctors were using until now.

Training and test data sets We use a cross validation, the HMMs models of activities
were learnt on all but one video and tested on this excluded video. Both learning and
testing were performed on segments observations. The segment definition relies on the
usual constraints, a segment should contain a minimum of 5 frames and a maximum of
1000 frames. For description of the content recorded with wearable cameras we used the
two motion descriptors Htpe, containing 10 coefficients and describing the global instant
motion, and Hc, containing 8 coefficients which characterize the history of motion; the
visual descriptor CLD which contains l = 12 coefficient C=(c1, ... ,cl) and the Audio
descriptor which contains k = 5 audio descriptors p=(p1, ... ,pk), describing the presence
of the events: speech, music, noise, silence or periodic sounds. The RM and Localization
features were not used in this experiment. We designed the global description space in
an “early fusion” manner concatenating all descriptors in an observation vector o in Rn
space with n = 35 dimensions when all descriptors were used. We excluded isolated
descriptors from the possible description space configurations. Therefore the description
spaces candidates are composed of either 2, 3 ou 4 descriptors.

Evaluation protocol We considered the number of elementary states m=3, 5 or 7, for
each activity HMM. The initial looping probabilities A1

ii were set to 0.8 for 3 states HMM
and 0.7 for 5 states HMM and to 0.6 for 7 states HMM. The segmentation threshold was
evolving in the range [0.05; 0.95] by steps of 0.05. The 7 different activities (“working on
computer”, “reading”, “making tea”, “making coffee”, “washing the dishes”, “discussing”
and reject class “NR”) present in the videos were annotated, enabling us to evaluate the
performances according to the measures presented in 7.2. We will investigate the influence
of the segmentation threshold over the global accuracy. We will also give the chronogram
of one of the best cross validation runs in terms of global accuracy as the test video with
the closest global accuracy to this average value.
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Analysis of results We will first discuss the influence of the segmentation parameters,
then we will study the description space and finally analyze the activities recognition
results.

Segmentation analysis
The influence of the segmentation threshold is linked to the complexity of the model.

For the 3 states HMM configuration, the influence is less significant than we expected
but Figure 7.3.5(a) shows that the accuracy starts to decrease for threshold values higher
than 0.45. However, Figures 7.3.5(b) for 5 states HMMs and 7.3.5(c) for 7 states HMMs
show how a higher threshold induces poorer results. Indeed, the higher the threshold is,
the more the probability of having a segment containing different activities increases. For
instance, the activity “making coffee” and “washing the dishes” may follow each other in a
short time. Moreover, the higher the threshold is the less data are available for the HMMs
training, some learning activity sequences may be reduced to less observations than the
number of states. Therefore, when no valid data sequence is available the model cannot
be learnt and the recognition cannot be run. This explains the fall to zero in some curves
when there is not enough data to train the HMM. This is why in the next experiments on
real world data, we will apply the training on sequences of frames rather than on segments
to ensure enough data for the learning process.

Study of the description space The description space is defined as one of the
possible combinations of the descriptors, excluding the configurations with only one de-
scriptor. Figure 7.3.5 presents the average accuracy for different combinations of descrip-
tors as a function of the segmentation threshold parameter. As many configurations with
5 and 7 states have performances falling to zero, we will only study the performances in
the 3 states configuration. Considering first description spaces being the fusion of only
two descriptors, we can see that the poorest performance is obtained using only the mo-
tion descriptors HcHtpe. Combining Audio and Motion gives better results (HcAudio and
HtpeAudio) which indicates the positive contribution of the audio descriptor. But the best
results are obtained when fusing with the CLD: HcCLD and HtpeCLD. Considering now
all possible fusions, we can see that all the six best performances for a threshold lower
than 0.2 contains the CLD descriptor. The CLD descriptor seems to improve the results
for low segmentation thresholds. This is rather normal since the larger the segment is,
the less meaningful the CLD of the key frame will be, regarding the content of the seg-
ment. The full description space HcHtpeCLDAudio performs really well, especially for
the 0.15 threshold. Being more complex this description space also needs more training
data, therefore with higher thresholds the performance falls.

Activities recognition In order to evaluate the ADL recognition we have chosen
one of the best recognition results presented in Figure 7.3.6. The “read” and “discuss”
activities are present and detected for this video. Most detections for these activities
are correct or appear near an annotated event. The main confusions are observed for
the activities “make coffee” and “make tea”. These activities are similar in terms of
environment as well as motion and audio characteristics. Moreover, since these activities
are semantically close, this is not a big issue for the final task where doctors will watch
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Figure 7.3.6: Chronogram for description space HcHtpeCLDAudio with a segmentation
threshold of 0.15.

the videos using the index. The activity “wash the dishes” is missed but concerns only
one segment.

Conclusions and perspectives In this experiment, we have evaluated our approach in
a mid-volume corpus. The results are rather good but also show some confusion between
activities where the global descriptors can be close for different activities. The next ex-
periment will therefore be the first to include the local motion descriptor RM . The videos
used in this experiment were recorded in a controlled environment e.g. a laboratory; the
next experiment will be run on a similar corpus in terms of volume but with real world
data.

7.3.3 Real word application

Goal of the experiment The aim of this experiment was to run a first evaluation
of the proposed method in a real world application. The experiments were conducted
on 5 videos recorded with 5 different persons in 5 different environments, i.e. their own
homes. Each video is of an average duration of 40 minutes and contains approximately 10
activities; not all activities are present in each video. Each video represents an amount
of 50 to 70 thousands frames, which induces hundreds to a thousand segments according
to our motion-based temporal segmentation presented in section 6.3. The results of this
experiment will be used to select a subset of configurations for a larger scale experiment.
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Training and test data sets The HMMs were learned using 4 videos and the last
video was used for testing. This was done in a cross validation approach and the results
are presented in terms of global accuracy of activities averaged over the cross validation
process. The learning was done over a sub sampling of smoothed data extracted on frames.
The smoothing substitute the value of each frame descriptor by the average value on the
10 surrounding frames, then one out of ten samples is selected to build ten times more
learning sequences. The testing has been done on frames or segments of the last video. The
segment definition relies on the usual constraints, a segment should contain a minimum
of 5 frames and a maximum of 1000 frames. All descriptors (Hc, Htpe, RM , Audio, CLD,
Loc) are used in this experiment. The description spaces are built using each descriptor
separately and with all possible combinations of descriptors where order is not considered.
Therefore, a total of 63 different description spaces are taken into account. We design the
global description space in an “early fusion” manner concatenating all descriptors in an
observation vector.

Evaluation protocol In the experiments presented here, the bottom level HMM of
each activity contains 3 or 5 states. For one evaluation all activities have the same num-
ber of states, except the “None” which may be modeled with more or fewer states, here
9 or only one. The initial looping probabilities A1

ii were set to 0.8 for both 3 and 5
states HMM. All HMMs observation models are 5 Gaussians mixtures except the “None”
one state-HMM which has only one Gaussian. The segmentation threshold is fixed to
0.2. The set of activities contains 17 different activities: “Cooking”, “Moving around”,
“Hoovering”, “Sweeping”, “Clear the table”, “Make the bed”, “Cleaning shovel”, “Washing
dishes”, “Cleaning garbage”, “Body hygiene”, “Aesthetic hygiene”, “Gardening”, “Read-
ing”, “Watching TV”, “Using computer”, “Using coffee machine”, “Using cooker”, “Using
microwave”, “Medicine”, “Use the phone”, “Home visit” and reject class “None”. They
were annotated in the videos, enabling us to evaluate the performances according to the
global accuracy measure, which is a ratio between the number of correct estimations and
the total number of observations, see section 7.2. We will analyze the performances of
recognition using either frames or segments. We will distinguish the best set of descrip-
tion space, this selection will be used in the large scale experiment.

Analysis of results

Evaluation of the influence of temporal segmentation The proposed tempo-
ral segmentation reveals three main advantages. First, the amount of data to process in
the recognition process is reduced by a factor between 50 and 80 since one observation
is defined for a segment and not for a frame. Second, the key frames may be used as a
summary of the whole video which is relevant as it gathers the evolution of the patient
in successive places. Finally, the evaluation of recognition performance presented in Fig-
ure 7.3.7 shows that the results are better when the recognition process is run on segments.
The description spaces are ordered by decreasing performances on segments recognition.
The best results are always obtained with segments as observations and other results are
similar using frames or segments.
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Figure 7.3.7: Global accuracy evaluation of recognition using frames (blue curve and square
points) and segments (red curve and diamond shaped points) over all the description spaces
fusion tested (sorted by decreasing accuracy with respect to segments approach).
NB: For a better readability of the figure, results are shown for a selected configuration
(3statesNone1State) of the HMM but are similar for other configurations.
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Description space evaluation Figure 7.3.7 also shows which configurations are
the most successful for the task. All the 33 best configurations are actually all the config-
urations including the CLD descriptor. We will therefore in the following only consider
configurations which include CLD, and evaluate all possible combination of it with the
other descriptors. The results are presented in Figure 7.3.8, where Figure 7.3.8a represents
the recognition performance in terms of accuracy when considering frames observations
while performances in Figure 7.3.8b are evaluated over segments observations. The de-
scriptions spaces ordered by decreasing performances according to the 3 states configura-
tion which is the one obtaining the best average results. Once again, a significant gain in
performance can be observed when using segments instead of frames observations. Here,
the best performance is obtained for the fusion AudioCLD with configurations where the
reject class is modeled with a single state, the reject class modeling will be studied in
the next paragraph. As a general trend, the 3 states configuration gives the best results
even if for some description spaces, other configurations may obtain slightly better pefor-
mances. The best performances for the 3 states configuration are obtained for description
spaces HtpeLocCLD, RMCLD, HcAudioLocCLD and HcHtpeLocCLD, showing that all
descriptors are relevant.

Reject class model evaluation We have also investigated the influence of modeling
the reject class “None” in a different way than all the IADL HMMs. We have performed
experiments when modeling this “None” class by a single state HMM or by a much more
complex 9 states HMM. From the same Figure 7.3.8, we can see as a general trend that
performances with the reject class being modeled as a single state are clearly poorer and
using 9 states seems to have less influence on the performances. However, this configura-
tion with 9 states for the “None” class shows good performances in high dimensionality
description spaces built upon video segments.

Conclusions and perspectives This first experiment on real world data has shown the
difficulty of our task with a significative drop of performances compared to the experiment
run in controlled environment. This can be explained as this real world corpus is much
more difficult and therefore induces the need for a much larger corpus of learning sequences.
This is the aim of the next experiment. As the 3 states configuration have shown the best
average performance this configuration is selected for the large scale application.

7.3.4 Large scale application

Goal of the experiment The goal of this experiment was to evaluate the performances
on real world data. The previous experiments have shown the complexity of our data. To
efficiently learn complex activities as those involved in our videos, a large amount of
training data is necessary. The corpus which has grown since the last experiment to 26
videos recorded by 24 people is now more suitable for this complex learning task. From the
beginning of these experiments no normalization was applied to the descriptors. Some of
them are already normalized (Htpe, Audio) but other were used without a normalization
preprocessing in the previous experiments. We will therefore investigate the influence
of a normalization procedure in these experiments. We have chosen to use the min-
max normalization procedure. Min-max normalization subtracts the minimum value of a
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(a) Results using frames as observations

(b) Results using segments as observations

Figure 7.3.8: Global accuracy evaluation of recognition using segments over CLD and all
possible fusion with CLD description spaces using frames (a) or segments (b) as obser-
vations. The curves represent 6 different HMM configuration: 3 states (blue curve and
square points), 3 states with “None” class being model with only one state (red curve with
circle points), 3 states with “None” class being model with 9 states (yellow curve with
triangle pointing down points), 5 states (green curve and triangle pointing up points),
5 states with “None” class being model with only one state (purple curve with triangle
pointing right points), 5 states with “None” class being model with 9 states (pale blue
curve with triangle pointing left points). The curves are sorted by decreasing accuracy for
the 3 states results.
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Table 7.3.2: Number of training sequences.
Number of training sequences

Min Average Max
All activities 10 229 3112
All activities,
except “none”

10 114 401

dimension from each value of this dimension and then divides the difference by the range
of the dimension i.e. the difference between the maximum value and the minimum value.
These new values evolve therefore in the range [0, 1].

Training and test data sets Here we also use a cross validation, the HMMs models
of activities were learnt on all but one video and tested on this excluded video. This
was done in a cross validation approach and the results are presented in terms of global
accuracy of activities averaged over the cross validation process. The learning was done
over a sub sampling of smoothed data extracted on frames. The smoothing substitutes
the value of each frame descriptor by the average value on the 10 surrounding frames,
then one of ten samples is selected to build ten times more learning sequences. The
testing has been done on frames or segments of the last video. The segment defini-
tion relies on the usual constraints, a segment should contain a minimum of 5 frames
and a maximum of 1000 frames. The description spaces are the 12 best configurations
from previous experiments: HtpeAudioLocCLD, HtpeAudioRMLocCLD, HcLocCLD,
HtpeAudioRMCLD, HcHtpeRMLocCLD, HcHtpeLocCLD, HtpeRMCLD, AudioCLD,
HcAudioLocCLD, HcAudioRMLocCLD, HtpeLocCLD and RMCLD.

We give an overview of the number of training sequences for this experiment in Ta-
ble 7.3.2. We can see that even in this “large scale” experiment, some activties have still
a few training sequences. The activity with only 10 training sequences is “Relationship
home visit”. However, the average number of training sequences shows that for most ac-
tivities there is a sufficient number of them. When considering all activities, the reject
activity “none” is learned with the largest number of training sequences. When excluding
the reject activity, the maximum number of training sequences is for the activity “Clean-
ing dishes by hand”. The time for learning all activities HMMs for one description space
configuration, for one test video i.e. on the 25 other videos is about one hour, see details
in Table 7.3.3. The testing is instantaneous, the computation time is only one second.

Evaluation protocol We considered the number of elementary states fixed to m =
3, for each activity HMM. The initial looping probabilities A1

ii were set to 0.8. The
segmentation threshold is fixed to 0.2. The different activities “Food manual prepa-
ration”, “Displacement free”, “Cleaning hoover”, “Cleaning broom”, “Cleaning clear”,
“Cleaning bed”, “Cleaning shovel”, “Cleaning dustbin”, “Cleaning dishes by hand”, “Hy-
giene body”, “Hygiene beauty”, “Hygiene clothes”, “Leisure gardening”, “Leisure read-
ing”, “Leisure watch”, “Leisure computer”, “Complex machines coffee maker”, “Complex
machines gas cooker”, “Complex machines washing machine”, “Complex machines mi-
crowave”, “Medicines medicines”, “Relationship phone”, “Relationship home visit” present
in the videos were annotated. We will present the configurations giving the best results in
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Table 7.3.3: Training and testing computation time for the 12 selected description space,
each learning is run on 25 videos.

Computation time (s)
Learning Testing

Descriptors Min Average Max Average
HtpeAudioLocCLD 516 600 641 1

HtpeAudioRMLocCLD 1074 1219 1303 1
HcLocCLD 1548 1772 1912 1

HtpeAudioRMCLD 2083 2366 2558 1
HcHtpeRMLocCLD 2642 2987 3232 1
HcHtpeLocCLD 3158 3584 3881 1
HtpeRMCLD 3668 4148 4485 1
AudioCLD 4127 4696 5065 1

HcAudioLocCLD 4634 5281 5684 1
HcAudioRMLocCLD 5180 5891 6344 1

HtpeLocCLD 5664 6456 6944 1
RMCLD 6132 6977 7496 1

terms of F-score, recall, precision and global accuracy. We will give the confusion matrices
of the corresponding configurations, selected on a run of the cross validation process with
a performance close to the average performance. We will give the chronogram of one of
the cross validation run with the closest global accuracy to the best average value. We
will compare the performances when using, or not, the normalization procedure.

Analysis of results The configurations giving the best recognition results are presented
in Table 7.3.4. First of all, we can observe that all the proposed descriptors are relevant
for the task as they all appear at least once in the best recognition performances. We
can also note that the configuration which obtains the best recognition performance ac-
cording to one measure has also rather good performances when considering the other
measures. The Figure 7.3.9 shows a box plot depicting global accuracy performances of
each description space through five values: the minimum performance, lower quartile (Q1),
median (Q2), upper quartile (Q3), and maximum performance over all the cross validation
runs. This figure shows that the recognition performance evolves in a wide range over the
cross validation runs. It also shows that the normalized description spaces gives poorer
performances, this can be explained as the normalization process is done for each video
separately according to the maximum and minimum values of each dimension in order to
adapt the dynamic to each specific patient. This induces a change in the dynamics of each
dimension which is not independent of the video.

To analyze more precisely the performances at the activity level, confusion matrices are
plotted in Figure 7.3.10. In Figure 7.3.10a, which represent the F-score confusion matrix,
we can observe that most of the confusion appears between “cleaning” activities. The reject
activity “none” is involved in many confusions regarding all measures presented. Similar
conclusions can be drawn from the Figure 7.3.10b for precision and 7.3.10c for recall,
where the reject activity “none” is involved in most of the confusions while confusions
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Table 7.3.4: Configuration for the best recognition results

Configuration Mean
F-score Mean recall Mean

precision
Global
accuracy

HtpeAudioLocCLD 0.50 0.61 0.70 0.39
HcAudioLocCLD 0.48 0.62 0.65 0.36
HtpeLocCLD 0.50 0.60 0.70 0.39

HcHtpeRMLocCLD 0.44 0.61 0.60 0.41

Figure 7.3.9: Global accuracy with regards to description spaces for each set of descriptor,
performance with normalization is shown on the right and without normalization on the
left.
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(a) F-score

(b) Precision

(c) Recall

Figure 7.3.10: Confusion matrices for best average recognition results. The confusion
matrix presented is the result of one fold of the cross-validation giving the closest value to
the average performance.
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Figure 7.3.11: Chronogram for description space HcHtpeRMLocCLD selected for a video
where the global accuracy is close to the average value

between semantic activities often appears between activities which have similar semantics
such as “Cleaning” and “Hygiene” activities.

In Figure 7.3.11, the chronogram of activities is plotted for a video where the global
accuracy is close to the average value using description space HcHtpeRMLocCLD. We
can here again observe the confusion between activities of the same categories as for exam-
ple the confusion between “Cleaning clear” and “Cleaning broom” or between “Hygiene
beauty” and “Hygiene body”.

Conclusions and perspectives This large scale experiment has shown the improve-
ments on performances when a sufficient amount of learning data are available. Since the
recording sessions are going on we can expect that with the increasing amount of learning
data, the performances increase will continue. The set of descriptors proposed in this
manuscript captures most of the information contained in the video stream. However,
some activities are still hard to distinguish with this description space such as “Leisure
watch” and “Leisure use computer” which may correspond to similar motion, audio and
global visual content. Therefore, we will propose an object recognition method in the next
chapter as many IADLs are linked to the use of an object. Since we are building a de-
scription space with several modalities: motion, audio and visual features, the early fusion
may not extract fully the discriminative power of each modalities. More precisely, some
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modalities may be more discriminant for some kinds of activities but be mostly seen as
noise for others. Therefore, an intermediate or late fusion where modalities are weighted
specifically for each activity may also enhance the performances.

Conclusion
Thus, we have conducted experiments for the task of activities recognition with a controlled
environment corpus and a real world corpus of same volume i.e. approximately same
number of videos and activities. We then conducted a larger scale experiment on real
world data with a much larger number of people recording many activities in many different
environments. Several conclusions can be drawn from the analysis of these experiments:

• In order to have a sufficient amount of training data, the learning process should be
done on frames observations and not on segments.

• In order to avoid an over segmentation during the recognition stage, the observations
should be computed on segments.

• The most complete descriptions spaces including most of the descriptors presented in
this report give the best performances. These descriptors captures the information
in both video domain, by analyzing the motion and the visual content, and audio
domain.

The global performances of the method in a controlled environment with a mid-volume
corpus are rather good with a best global accuracy score of 0.71. However, they drop
significatively in an unconstrained environment with the same volume of data with a best
global accuracy score of 0.3. This can be explained by an insufficient amount of training
data with regard to the variability of the content of the video scenes. Finally, on a larger
scale corpus we observe a strong improvements of performances as the data space is better
covered for training with a best global accuracy score of 0.41.

From the computation cost point of view the HMM-based indexing is a non-symmetric
tool requiring a strong operational workload for the training stage. In the actual state of
the work, the recognition step is also performed off-line and some improvements in the
data processing protocol are ongoing. The off-line process is not an obstacle for potential
use in clinical practice, as the medical practitioner has to get the final indexing result and
not to observe the patient in real-time.

This allows us to conclude that in the context of the IMMED project where data
collection will be continued during the next 12 months period, the proposed approach will
bring satisfactory results as the training data volume increases. Nevertheless, in view of
results we got for the choice of best description space, in the sense of its completeness,
we have to further investigate for meaningful features which would be strongly correlated
and sufficiently discriminative for activity recognition. Thus, in the following we present
our results for extraction of such feature that is object recognition.
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Conclusion

In this part we proposed a solution for activities recognition in wearable videos in the
framework of Hidden Markov Models (HMM) formalism. After the analysis of the large
state-of-the-art of HMM, we proposed a two-level Hierarchical HMM which we considered
most adapted for our problem. We have also introduced a pre-segmentation method based
on the global motion estimation.

Different description spaces comprising low-level features such as color features of
frames, ego-motion, local residual motion and mid-level features results of partial inter-
pretation of the data such as localization in home environment and audio events have been
explored. A large scale experimental study on all available corpora allowed for optimal
choice of feature combinations but also showed the limits of available description.

Thus, we strongly believe that the incorporation of more semantic feature in the
proposed framework could improve the performance. Many activities involve interac-
tions with objects and therefore the recognition of objects can help inferring the activi-
ties [PFP+04] [PFKP05]. For this reason, in the following part of this PhD manuscript
we will tackle an ambitious task of object recognition in frames which we think will be
helpful in the feature.
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Part III

Objects Recognition
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Introduction

The problem of object recognition in images and videos is one of the hottest in the com-
munity. It is a topic of international competitions of leading researchers in the field such
as PascalVOC1 and TRECVID2. A large variety of methods have been proposed since the
last decades on the bases of local features [Low04] and machine learning approaches. It
is clear today that we are stepping into a very large road which still has not led to the
right goal. In the variety of methods proposed to achieve the object recognition task, the
recent trend which seems promising to us is on the consideration of spatial context in the
recognition process [LSP06], [SARK08].

Thus in this part of the manuscript we will propose an approach for object recognition
with a new structural and statistical feature keeping good properties of invariance with
regard to affine transformation of image plan preserving angles, we call graph words. To
efficiently introduce our approach we will first review the state-of-the-art of bag-of-features
approaches and related extensions, and further the development of our approach based on
this philosophy.

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/
2http://trecvid.nist.gov/
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Chapter 8

Objects Recognition in Images
and Videos : Insight of the
State-of-the-Art

Introduction

The SIFT and SURF features previously introduced in chapter 4 have been widely used
for representing and matching images in many applications such as automatic stitching,
image retrieval, object and location recognition. In the context of image retrieval in
databases or object recognition with learning from a large-scale database image to image
matching within the whole database is untractable. Therefore an efficient approach was
introduced in the last years called the Bag-of-Visual-Words (BoVW) framework [SZ03].
We will present, in next section, the main ideas of this approach. The last sections present
some approaches taking the strength of the framework and trying to compensate some of
its drawbacks.

8.1 Bag-of-Visual-Words

The state-of-the-art in image or object categorization and recognition has been highly
influenced by the paper [SZ03] published by Sivic and Zisserman. In this paper, they have
proposed to apply many techniques that have proven to be efficient for text retrieval in
the context of object matching within videos. The Bag-of-Words framework will first be
presented for the application to text documents. Then, the main steps for its application
to images will be reviewed.

8.1.1 Bag-of-Words for text documents

In text retrieval [Lew98], documents are parsed in words. Each word is represented by
its stem, for example the stem «walk» stands for the possible variations «walking» or
«walks». Then a stop list is used to reject the most common words such as «the» and
«an» since they are not discriminant. A unique identifier vi is associated to each stem.
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Each document d is represented by a vector W giving the frequency of occurrence of the
words the document contains: Wd = (tv1 , ..., tvi , ..., tvk) .

These values may be weighted, for example by the term frequency-inverse document
frequency (tf-idf) weighting [MS83]. Each component of the vector representing the docu-
ment is the weighted word frequency computed as the product of two terms as in eq. (8.1.1):
the word frequency nid

nd
and the log inverse document frequency log N

ni
, where nid is the

number of occurrences of word vi in document d, nd is the total number of words in the
document, ni is the number of occurrences of term vi in the whole database and N is
the number of documents in the whole database. The word frequency term weights words
occurring often in a document while the inverse document frequency term down weights
words that appear often in the database and are therefore less discriminative.

tvi = niI
nI

log
N

ni
(8.1.1)

Another interesting technique is the use of inverted file which enables fast retrieval.
An inverted file has an entry for each word in the corpus followed by a list of documents
in which the word occurs. Finally, a text is retrieved by computing its vector of word
frequencies and returning the documents with the closest vectors.

8.1.2 Bag-of-Words for images

A general presentation of the framework applied to images is presented in the first part of
this section and the approach proposed by Sivic and Zisserman for images is detailed in
its remainder. The limit of each module and possible alternatives will be discussed after.

8.1.2.1 Overview

The Bag-of-Visual-Words framework has four main stages: building a visual dictionary,
quantifying the features, choosing an image representation using the dictionary and com-
paring images according to this representation. These steps are explained in the following
paragraphs.

Visual dictionary When using images which are only composed of pixel values in a color
space, it is necessary to define an equivalent to words in the text context. The images
are represented by a set of features describing the content of some regions of interest
extracted from the image. Local features such as SIFT and SURF introduced in section 4
are relevant and widely used for image representation. Local features computed over the
same object or part of an object contained in different images have many variations due
to change of illumination, orientation and so on. They can be seen as hand written words
of variations of a stem. According to this analogy, it is necessary to create a set of «visual
words» that we can call a «visual dictionary» and denote it by V . Generally, a set of
randomly selected features is used to build a visual dictionary by clustering. Similarly to
the method in text domain, the most common and rare words can be deleted from the
dictionary to enhance the performance.
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Feature quantization Feature vectors are often real vectors of high dimension therefore
computing distances between many feature vectors is expensive. Moreover, feature vectors
computed on the same part of an object or a scene in slightly different illumination or
viewing angle conditions will not have exactly the same values. Therefore to enhance
the computational performances and have robust representation of an image the feature
vectors are quantized according to the visual dictionary V . Usually the quantization step
consists in assigning each feature fi of an image to its closest word vi in the dictionary V .
This process can be referred to as the «coding step».

Image representation According to the visual dictionary of k words, each image I of
the data set can now be represented by a k-vector of visual word frequencies WI . Usually,
the vector is normalized by the number of features within the image. Therefore, WI is a
normalized histogram representing the distribution of visual words for the image I. The
normalization process enables to compare images which may have different number of
features. The visual word can also be weighted by the tf-idf weighting scheme presented
in (8.1.1).

Image comparison All images are now represented by histograms, therefore the com-
parison of two images can be simply done be comparing two histograms. When the number
of images in the database grows, this comparison may become computationally expensive.
The document vector is very sparse, the comparison of all these sparse vectors is not effi-
cient for retrieval. Since in many applications the task is to retrieve similar images without
necessary ranking all the images, another useful tool from the text retrieval domain can be
applied. In the classical file structure words are stored in the document they appear. On
the contrary, an inverted file structure has an entry for each word where all occurrences of
the word in all documents are stored. Therefore, querying the database for similar images
can be achieve by simply retrieving the content of the inverted file at entries corresponding
to the visual words of the query image. Hence, the ranking process will be applied on a
small subset of the database.

8.1.2.2 Sivic and Zisserman proposal

Sivic and Zisserman [SZ03] have used two interest regions detectors: Shape Adapted
(SA) [MS02] and Maximally Stable (MS) [MCUP04] regions but both are represented by
SIFT features. In this paper, the vector quantization is carried out by K-means clustering.
The number of clusters is chosen empirically to maximize retrieval results on the ground
truth sets, about 6k clusters are used for Shape Adapted regions, and about 10k clusters
for Maximally Stable regions. At the retrieval stage images are ranked by their normalized
scalar product (cosine of angle) between the query vector Wq and all images vectors WI

in the database.
In their experiments Sivic and Zisserman have first tested this approach on scene

matching. The data set is composed of 164 frames from 48 shots taken from 19 different
locations from the movie Run Lola Run. Each frame is used in turn as a query region.
The retrieval performance are evaluated using the average normalized rank of relevant
images [MMMP02]. The performance shows the efficiency of the method as the retrieval
ranking is perfect for 17 of the 19 locations.



108 Chapter 8. Objects Recognition in Images and Video

The second experiment is on object retrieval, the query object is defined by the user as
a sub-part of any frame. A key frame is extracted every second of the movie. Descriptors
are computed and quantized using the dictionary for each frame. For this object retrieval
task, frames are first ranked according to the weighted frequency vector alone, and then
re-ranked according to a spatial consistency measure. A search area is defined by the 15
nearest neighbors of each match, and each region which also matches within this area casts
a vote for that frame. Matches with no support are rejected and the total number of votes
determines the rank of the frame. The results are once again really good as most of the
highly ranked frames contains the query object.

Some ideas presented by Sivic et al. are not always reproduced in more recent works.
For example they have used the classical weighting scheme from text retrieval which is the
«term frequency-inverse document frequency» presented earlier. The adaptation to images
is straightforward, each component of the vector WI = (tv1 , ..., tvi , ..., tvk) representing
image I corresponds to the weighted word frequency computed as the product of two terms
as in (8.1.1): the word frequency niI

nI
and the inverse document frequency log N

ni
, where niI

is the number of occurrences of visual word vi in image I, nI is the total number of visual
words in image I, ni is the number of occurrences of visual word vi in the whole database
and N is the number of images in the whole database.

Another way of increasing the discriminative power of the words produced by the
clustering is to use a stop list. The idea of the stop list is to remove from the vocabulary
words which are very frequent and those who are very rare. The stop list used by the Sivic
and Zisserman was determined empirically. They considered the top 5% and the bottom
10% as stop words.

8.2 Bag-of-Visual-Words limitations and improvements

The BoVW framework was clearly a breakthrough in the domain of image recognition
or retrieval. However, this framework had some limitations that have been discussed and
challenged since the paper of Sivic and Zisserman [SZ03]. We will review in this section the
different limitations and recently proposed improvements of each step of the procedure.

8.2.1 Dictionary building process

In the initial BoVW framework proposed by Sivic and Zisserman [SZ03], the visual dictio-
nary was built by a k-means clustering. This method has been widely used since [CDF+04,
LM01, WCM05]. The name «k-means» was first used in [Mac67], we will briefly review
the most common algorithm also referred to as Lloyd’s algorithm [Llo57].

K-means algorithm Given a set of n observations X = {x1, x2, . . . , xn}, the aim of the
k-means algorithm is to define k (k ≤ n) set of observations S = {S1, S2, . . . , Sk} so as to
minimize the within-cluster sum of squares:

argmin
S

k∑
i=1

∑
xj∈Si

‖xj − µi‖2 (8.2.1)
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where µi is the mean of points in set Si. The initial k means (µ(1)
1 , . . . , µ

(1)
k ) are usually

selected randomly in the data set and then the algorithm proceeds by alternating between
two steps:

• The assignment step: each observation in the data set is assigned to the closest
mean.

S
(t)
i =

{
xj |

∥∥∥xj − µ(t)
i

∥∥∥ ≤ ∥∥∥xj − µ(t)
l

∥∥∥∀l ∈ [1, k]
}

(8.2.2)

• The update step: calculate the new mean to be the centroid of each observations
cluster.

µ
(t+1)
i = 1∣∣∣S(t)

i

∣∣∣
∑

xj∈S
(t)
i

xj (8.2.3)

The k-means iterative process stops when the assignment no longer changes. The k-
means algorithm has no guarantee to converge to the global optimum and the result may
depend on initially selected means. Moreover, the local optimal solution found may be
arbitrarily bad compared to the global optimal solution.

Therefore an improvement of the algorithm, known as k-means++, has been proposed
in [AV07]. The intuition of the k-means++ algorithm is to spread initial cluster centers
away form each other. The first cluster is chosen uniformly at random from the data points,
after which each subsequent cluster center is chosen from the remaining data points with
probability proportional to its distance squared to the point’s closest cluster center. Once
the initialization is done, the standard k-means algorithm is applied. The k-means++
algorithm guarantees an approximation ratio O(log k).

Vocabulary tree One very interesting use of the k-means algorithm in the context
of the BoVW framework was proposed in [NS06], where the algorithm is used to build
a hierarchic structure that the authors called the vocabulary tree. The vocabulary tree
defines a hierarchical quantization that is built by hierarchical k-means clustering. A
large set of representative descriptor vectors are used in the unsupervised training of the
tree. Instead of k defining the final number of clusters or quantization cells, k defines
the branch factor (number of children of each node) of the tree. First, an initial k-means
process is run on the training data, defining k cluster centers. The training data is then
partitioned into k groups, where each group corresponds to the set of the descriptor vectors
closest to a particular cluster center. The same process recursively defines quantization
cells by splitting each quantization cell into k new parts. The tree is determined level
by level, up to some maximum number of levels L, and each division into k parts is only
defined by the distribution of the descriptor vectors that belong to the parent quantization
cell. The process is illustrated in Figure 8.2.1.

The tree directly defines the visual vocabulary and an efficient search procedure in an
integrated manner. This is different from defining a visual vocabulary non-hierarchically,
and then devising an approximate nearest neighbor search in order to find visual words
efficiently. The vocabulary tree gives both higher retrieval quality and efficiency compared
to the initial BoVW framework of [SZ03].
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Figure 8.2.1: An illustration of the process of building the vocabulary tree. The hierarchi-
cal quantization is defined at each level by k centers (in this case k = 3) and their Voronoi
regions. Image from [NS06].
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8.2.2 Visual words quantization

Given an image I, let F be a set of features computed at N locations identified with their
indices i = 1, ..., N . In previous sections, according to the analogy with text, we have
considered that, during the «coding step», a feature fi was associated with a single visual
word vi. However, in the visual domain, the visual words are much more ambiguous than
in the text domain. Therefore, a feature fi may be represented by a codeword being either
a single scalar value i.e. the identifier of the visual word or by a vector representing weights
of several words which are similar to the feature. Let αi be the codeword assigned to fi
by the coding operator q. For the sake of generalization, we will in the following consider
it as a vector αi = (αi,1, . . . , αi,k)T ∈ RK that relates feature fi to each visual word vk of
the dictionary by an affinity αi,k. The quantization can be formalized as in 8.2.4.

αi = q (fi), i = 1, ..., N (8.2.4)

The coding step or quantization is the process of transforming the input feature fi into
a representation αi that has some desirable properties such as compactness, sparseness
(i.e. most components are 0) or statistical independence. An efficient coding step should
be able to tackle the codewords ambiguity which encompass several different situations
presented in Figure 8.2.2, where the data sample represented by a square is close to
two codewords and the one depicted by a diamond is far from the closest codeword.
Different coding operators have been proposed in the literature but often in a whole image
retrieval or recognition framework without much discussion of the influence of this choice.
In [BBLP10], Boureau et al. have studied the influence of three of the most widely used
coding operators: hard quantization, soft quantization and sparse coding. In the following
paragraphs we will review the principles of these process and their performances.

Hard quantization Hard quantization is the classical formulation of the bag-of-words
framework [SZ03]. The coding operator q minimizes the distance to a code book, i.e. each
feature is assigned to the closest codeword in the dictionary, which is usually build by an
unsupervised algorithm such as K-means. Let vk denote the k-th codeword. This process
can be formalized as:

αi,j =

 1 if j = argmin
j

‖ fi − vj ‖22

0 otherwise
(8.2.5)

Soft quantization From the previous definition it is clear that there is a strong quan-
tization by assigning a continuous feature to a single representative. This drawback has
been studied by Gemert et al. in [GVSG10]. They explore soft quantization techniques
and evaluate the influence on classification performances when using low to high dimen-
sional features or small to very large vocabulary. The idea of soft quantization is to tackle
the ambiguity of a visual word that hard quantization simply ignores. The drawbacks of
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Figure 8.2.2: An example illustrating visual word ambiguity in the code book model. The
small dots represent image feature vectors. The labeled red circles are visual words found
by unsupervised clustering. The triangle represents a data sample that is well suited to
the code book model. Visual word uncertainty is exemplified by the square, whereas visual
word plausibility is illustrated by the diamond. Figure from [GVSG10].
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hard quantization are twofold: (i) when a data sample is close to several codewords, only
the closest is considered and (ii) a codeword is assigned to the closest codeword no matter
how far it can be. The first aspect is referred to as word uncertainty and the second as
word plausibility. Instead of using histograms to estimate the probability density func-
tion the authors proposed to use a kernel density estimation [BSI08], [SG86]. Defining
a Gaussian-shaped kernel Kσ(x) in (8.2.6), three models are studied in this paper. The
kernel codebook KCB defined in (8.2.7) will weight each word by the average kernel den-
sity estimation for each data sample. The codeword uncertainty UNC defined in (8.2.8)
normalizes the amount of probability mass to a total of 1 which is distributed over all
relevant codewords. Finally, the codeword plausibility PLA defined in (8.2.9) will give a
higher weight to more relevant data samples but is not able to select multiple codeword
candidates. The weight distributions obtained by these three kernel based approaches and
the standard hard quantization techniques on the example of data samples presented in
Figure 8.2.2 are depicted in Figure 8.2.3. The results on a classification task obtained on
the data sets Scene-15, Caltech-101, Caltech-256 and Pascal VOC 2007/2008 shows that
the codeword uncertainty UNC outperforms all other methods using either low or high
dimensional feature vectors or small or very large visual vocabulary.

Kσ(x) = 1√
2πσ

exp(−1
2
x2

σ2 ) (8.2.6)

αKCBi,j = Kσ(D (vj , fi)) (8.2.7)

αUNCi,j = Kσ(D (vj , fi))∑|V |
k=1Kσ(D (vk, fi))

(8.2.8)

αPLAi,j =


Kσ(D (vj , fi)) if vj = argmin

vj∈V
(D(vj , fi))

0 otherwise,
(8.2.9)

Sparse Coding Sparse coding [OF97] uses a linear combination of a small number of
codewords to approximate the feature fi. These codewords are represented by a dictionary
V = (v1, . . . , vk) in matrix form V ∈ Rd×K where d is the dimension of the feature
space. The linear weights correspond to the vector αi = (αi,1, . . . , αi,k)T ∈ RK . Yang
et al. [YYGH09] have obtained state-of-the-art results by using sparse coding and max
pooling. We will here only briefly define the sparse coding process as an overview of sparse
coding is beyond the scope of this manuscript.

α̂i = argmin
αi

L(αi, V ) , ‖ fi − V αi‖22 + λ ‖αi‖1

=
∥∥∥∥∥ fi −∑

k

αi,kvk

∥∥∥∥∥
2

2

+ λ ‖αi‖1
(8.2.10)
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Figure 8.2.3: Summary of different types of codeword ambiguity. Figure from [GVSG10]

where ‖α‖1 denotes the L1 norm of α, λ is a parameter that controls the sparsity, and V is
a dictionary trained by minimizing the average of L(αi, V ) over all samples, alternatively
over V and the αi. Yang et al. and Boureau et al. [BBLP10] have shown that sparse
coding outperforms both hard quantization and soft quantization in several data sets such
as Scene-15, Caltech-101 and Catlech-256.

The initial hard quantization process has clear limitations. The recent improvements
which consist of distributing each feature over a small number of representative codewords
clearly enhance the quantization step of the Bag-of-Words framework.

8.2.3 Visual words distribution comparison

Histograms comparison The BoVW approach represents the distribution of visual
words in an image by an histogram. The comparison of two images therefore relies only on
the comparison of their representative histograms. Let WA and WB be the visual words
distribution histograms of two images A and B respectively, both being normalized and
of same dimensionality K. Let us denote W (i) the value of the i-th bin of the histogram.
Many metrics can be defined to compare histograms, we will review those which have often
been used in BoVW frameworks.
• The L2 metric:

dL2(WA,WB) =
K∑
i=1

(W (i)
A −W

(i)
B )2 (8.2.11)

• The Chi-Square metric:

dχ2(WA,WB) =
K∑
i=1

(W (i)
A −W

(i)
B )2

W
(i)
A +W

(i)
B

(8.2.12)

• The L1 metric:

dL1(WA,WB) =
K∑
i=1

∣∣∣W (i)
A −W

(i)
B

∣∣∣ (8.2.13)
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In practical applications, most of the approaches use the histogram intersection or the L1
distance or equivalently the associated similarity1, the histogram intersection:

I(WA,WB) =
K∑
i=1

min(W (i)
A ,W

(i)
B ) (8.2.14)

8.2.3.1 Feature distribution comparison

Not all approaches recently developed in the context of image retrieval use the quantization
according to a single visual dictionary. One interesting approach presented in [GD05]
makes use of a multiresolution quantization process.

Pyramid Matching kernel Instead of quantifying features as visual words accord-
ing to a visual dictionary, the Pyramid Match Kernel (PMK), presented in [GD05], maps
unordered features sets to a multi-resolution histograms and then compares the histograms
with a weighted histogram intersection measure in order to approximate the similarity of
the best partial matching between the two feature sets. This Kernel function is positive-
definite, making it appropriate to use with learning methods that guarantee convergence
to a unique optimum for positive-definite kernels, for example SVM (Support Vector Ma-
chines). The method does not assume a parametric model and can handle sets of unequal
cardinality.

An image can be represented by a feature set F of mF d-dimensional feature vectors
in an input space X:

X =
{
F |F =

{[
f1

1 , ..., f
1
d

]
, ...,

[
fmF1 , ..., fmFd

]}}
(8.2.15)

The feature extraction process builds a vector of concatenated histograms Ψ(F ),
see (8.2.16). The number of levels in the pyramid L is set to log2 d. Each histogram
Hi(F ) have bins of side length 2i, each subsequent histogram has bins that double in size
(in all d dimensions) compared to the previous one. At the finest-level, each data point
fall in its own bin of the histogram H−1 while all data points falls potentially into a single
bin at the coarsest level L.

Ψ(F ) = [H−1(F ), H0(F ), ..., HL(F )] (8.2.16)

In this multi-resolution histogram space, the pyramid match kernel K∆ (8.2.17) mea-
sures the similarity between points sets y and z as a weighted sum of the number of newly
matched pairs of features Ni found at each level i of the pyramid formed by Ψ. The
weight wi is proportional to how similar two points can be, as determined by the bin size.
Matches made within large bins are weighted less than those found in smaller bins. In
practice the choice made by Grauman and Darell [GD05] is to set the weight to 1

2i to
reflect the (worst case) similarity of points matched at level i.

1I(WA, WB) = 1
2
∑K

i=1 W
(i)
A +W

(i)
B −

∣∣∣W (i)
A −W

(i)
B

∣∣∣ = 1−dL1 (WA, WB) if
∑K

i=1 W
(i)
A =

∑K

i=1 W
(i)
B = 1
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K∆(Ψ(y),Ψ(z)) =
L∑
i=0

wiNi (8.2.17)

To compute the number of newly matched pairs, the kernel makes use of a histogram
intersection function I (8.2.14) which measures the «overlap» between two histograms
of r bins at the same level. Then Ni is computed as the difference between successive
histogram levels intersections (8.2.18). The kernel never computes distances between the
vectors in each set. It simply counts the number of newly matched pairs by comparing
the intersection measure at successive scales, see Figure 8.2.4.

Ni = I(Hi(y), Hi(z))− I(Hi−1(y), Hi−1(z)) (8.2.18)

The PMK allows computing a relaxed [Ved09] metric between two sets, which is less
strict on quantization boundaries than non pyramidal comparison. However, this method
does not take into account the spatial relations between the features extracted from the
image. The next section will detail some approaches that integrate spatial information for
distribution comparisons.

Context Dependent Kernel Let us denote two sets of interest regions SA ={
rA1 , . . . , r

A
n

}
and SB =

{
rB1 , . . . , r

B
m

}
extracted from two images A and B respectively,

where a region rIi of image I is defined by its coordinates (xIi , yIi ) and a feature f Ii :
rIi = (xIi , yIi , f Ii ) . The previous approaches have compared the two sets SA and SB by
either quantifying these features as visual words and comparing their visual distribution
WA and WB as histograms or by comparing a pyramid of histograms quantization in
the feature space. Both of these approaches discard all spatial relations, e.g. proximity,
between the interest regions extracted.

In [SARK08] and [SAK10], Sahbi et al. have introduced a kernel which takes into
account both feature similarity «alignment quality» and spatial alignment in a «neighbor-
hood» criteria. The «Context-Depenedent Kernel» (CDK) is defined as the fixed-point of
an energy function which balances a «fidelity» term, i.e. the alignment quality in terms of
features similarity, a «context» criterion, i.e. the neighborhoods spatial coherence of the
alignment and an «entropy» term. The proposed alignment model is model-free, i.e. it is
not based on any a priori alignment model such as homography and can therefore capture
inter-object transformations.

Considering any pair of regions (rIi , rJj ) of two images I and J , let us denote D the
matrix of dissimilarity in the feature space: DrIi ,r

J
j

= d(rIi , rJj ) =
∥∥∥f Ii − fJj ∥∥∥2

. Let N (rIi )
be the set of neighbors of rIi . Let us denote P the proximity matrix defined according to
the neighborhood criterion:

PrIi ,r
J
j

=
{

1 if I = J and rJ
j ∈N (rIi )

0 otherwise
(8.2.19)
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Figure 8.2.4: A pyramid match determines a partial correspondence by matching points
once they fall into the same histogram bin. In this example, two 1-D feature sets are used
to form two histogram pyramids. Each row corresponds to a pyramid level. In (a), the set
y is on the left side, and the set z is on the right. Light dotted lines are bin boundaries,
bold dashed lines indicate a pair matched at this level, and bold solid lines indicate a match
already formed at a finer resolution level. In (b) multi-resolution histograms are shown,
with bin counts along the horizontal axis. In (c) the intersection pyramid between the
histograms in (b) are shown. K∆ uses this to measure how many new matches occurred at
each level. Ii refers to I(Hi(y), Hi(z)). Here, Ii = 2, 4, 5 across levels, and therefore the
number of new matches found at each level are Ni = 2, 2, 1. The sum over Ni, weighted
by wi = 1, 1/2,1/4, gives the pyramid match similarity. Image from [GD05]
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The Context-Dependent Kernel K is the unique solution of the energy function mini-
mization problem and is the limit of:

K(t) = G(K(t−1))∥∥G(K(t−1))
∥∥

1

where

G(K) = exp(−D
β

+ α

β
PK(t−1)P )

and

K(0) =
exp(−Dβ )∥∥∥exp(−Dβ )

∥∥∥
1

Where exp represents the coefficient-wise exponential and ‖M‖1 =
∑
ij |Mij | represents

the L1 matrix norm. The two parameters β and α can be seen respectively as weights
for features distance and spatial consistency propagation. The CDK convergence is fast,
in [SAK10] only one iteration was applied. The CDK was evaluated on the Olivetti face
database, the Smithsonian leaf set, the MNIST digit database and ImageClef@ICPR set
showing significant improvements of equal error rate (ERR) compared to Context-Free
Kernels.

8.2.3.2 Distribution comparison using visual words and spatial information

Yet efficient, the Bag-of-Words approach does not cover one important part of an image or
an object: the spatial organization. Representing an image by a global histogram induces
lack of spatial information and relations between interest regions. In the past few years,
several methods have tried to overcome this limitation of the BoW framework. We will
here report two approaches that uses local histograms instead of global histograms: visual
phrases and the spatial pyramid matching kernel.

Visual Phrases In [AMC10], Albatal et al. note two important limitations of the BoW
framework as visual words are much more ambiguous than text words and that in the
global histogram representation, all information related to topological organization of the
regions of interest in the image are lost. They have proposed a method to create groups
of regions in the image to form areas which are spatially larger than the individual regions
and have the same robust visual properties. As shown in [ZZN+08], grouping several
regions may describe and distinguish classes of objects better than individual regions. Let
a region of interest rIp be a quadruple (xp, yp, ρp, fp) ∈M , with: xp and yp the coordinates
of the region center in the image I, ρp is the radius of the region, fp the visual feature of
the region and M the domain of possible values for regions of interest. Let RIdenote the
set of all regions of interest in an image I.
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Albatal et al. have proposed to use a «Single Link» clustering function, with a topo-
logical proximity criterion based on the Euclidean distance between the regions of interest,
see (8.2.20). This criterion defines two regions as close if the Euclidean distance between
their centers is less or equal than the sum of their radii. This type of clustering does not
depend on the starting point and ensure that the created groups are disjoint i.e. each
cluster defines a visual phrase.

c(rIp, rIn) ≡
√

(xp − xn)2 + (yp − yn)2 ≤ ρp + ρn (8.2.20)

Each Visual Phrase is then represented as a histogram of N dimensions with N the number
of words in a chosen visual dictionary V . Visual Phrases construction process gives the
following properties to the visual phrases:

• Invariance to scale changes: the topological proximity criterion does not change with
scale. If the scale becomes larger, distances between regions and radii of regions will
expand proportionally;

• Invariance to rotations: rotation does not affect the distance between regions nor
regions radii;

• Invariance to translations: translation does not change the criterion of proximity;

• Invariance to brightness changes: this property is hold by the regions of interest,
Viusal Phrase would simply inherit it.

The approach is evaluated on an automatic annotation task on the VOC2009 collection.
First, in the learning step, Visual Phrases are extracted and labeled according to objects
boundaries in the training images. A supervised discriminative algorithm is applied to
learn an annotation model per class, which is able to give a score to each Visual Phrase
that indicates whether it represents part of an object or not. Finally, the score of a
new image is calculated using the scores obtained by its Visual Phrases according to the
annotation model. The evaluation shows that using Visual Phrases only yields poorer
results than the baseline (BoW on the whole images) but according to the authors mainly
because Visual Phrases account only for the description of the objects while the baseline
integrate also information about the background. A late fusion of recognition score for
each image enhance the performance above baseline’s initial results.

Spatial Pyramid Matching One of the successful approach to overcome the lack of
spatial information within the BoW framework is the Spatial Pyramid Matching Kernel
(SPMK) approach introduced in [LSP06]. The method is using the Pyramid Match Ker-
nel [GD05] in order to compare images signatures according to a visual vocabulary but
applying the pyramid construction to the coordinates of the features in the image space.
The features are quantized into K discrete types according to a visual vocabulary V ob-
tained by traditional clustering techniques in feature space. Only features discretized to
the same channel k can be matched. For a pair of images X and Y to compare, each chan-
nel k gives two sets of two-dimensional vectors, Xk and Yk, representing the coordinates
of features of type k found in images X and Y respectively.
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Figure 8.2.5: Toy example of constructing a three-level pyramid. The image has three
feature types, indicated by circles, diamonds, and crosses. At the top, the image is sub-
divided at three different levels of resolution. Next, for each level of resolution and each
channel, we count the features that fall in each spatial bin. Image from [LSP06].

The kernel computation is illustrated in Figure 8.2.5. The final kernel (8.2.21) is the
sum of the separate channel kernels. For L = 0 the approach is reduced to a standard
bag-of-words approach. Experiments on three publicly available images databases show
significant improvements using the Spatial Pyramid Matching approach. However, since
locations are expressed in absolute coordinates, the representation is unsuitable in the case
of spatial displacement of the object of interest unless exhaustive search is done using a
spatial sub-window.

KL(X, Y ) =
K∑
k=1

KL
∆(Xk, Yk) (8.2.21)

8.2.3.3 Relaxed Matching Kernels

A. Vedaldi has generalized in his thesis [Ved09] several kernel matching approaches for
object recognition, including the Pyramid Match Kernel and the Spatial Pyramid Match
Kernel, as «Relaxed Matching Kernels» that we will denote by RMK. The PMK is a
RMK in the feature space domain while SPMK is a RMK in the spatial domain. The
usual trade-off when choosing the resolution of the visual dictionary is that an excessively
fine quantization causes features from two images to never match (over-fitting), while
an excessively coarse quantization yields non-discriminative histograms (bias). The main
idea of RMK is to overcome this trade-off by using different resolutions of vocabulary by
building a sequence of R relaxed (coarser) dictionaries V0, V1, . . . ,VR−1, where each word
is obtained by merging words which are close in the finer vocabulary. The result of this
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Figure 8.2.6: RMK construction: agglomerative tree.
Left. The feature space F and a sequence of three relaxations V0, V1 and V2. Right. The
agglomerative tree represents the merging operations transforming a relaxation to the
next. Each relaxation Vr corresponds to a cut of the tree (dotted boxes). Figure from
[Ved09] .

process is an agglomerative tree, see Figure 8.2.6. Each relaxed dictionary can be seen as
a cut of the tree, having the property of preserving the mass of the dictionary:

|V0|∑
i=1

h
(i)
0 = 1 =

|Vr|∑
j=1

h(j)
r (8.2.22)

Then, given two images I and J , a similarity measure Sr (8.2.23) is defined considering
a base kernel k (8.2.24) and a multiscale approach computes a weighted score (8.2.25) of
multiple relaxations as a positive combination of the BoF similarities at the various levels.

Sr = k (hI,r, hJ,r) (8.2.23)

The base kernel, which may be the l1 kernel k1, the χ2 kernel kχ2 or the Hellinger’s kernel
kH , compute the similarity at one relaxation level:

k1(hI,r, hJ,r) =
|Vr|∑
i=0

min (h(i)
I,r, h

(i)
J,r)

kχ2(hI,r, hJ,r) = 2
|Vr|∑
i=0

h
(i)
I,r h

(i)
J,r

h
(i)
I,r + h

(i)
J,r

kH(hI,r, hJ,r) =
|Vr|∑
i=0

√
h

(i)
I,r h

(i)
J,r

(8.2.24)
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The weights wr are positive and establish the relative importance of relaxations levels.
This formulation yields a proper Mercer (positive definite) kernel : the «Relaxed Matching
Kernel» (RMK).

K(hI , hJ) =
R−1∑
r=0

wrSr (8.2.25)

The «Relaxed Matching Kernel» gives a generalization of recent efficient approaches
such as PMK and SPMK. The main idea behind relaxed matching is that, the difficulty of
fixing some parameters of many methods can be overcame by a relaxed kernel exploring
several parameters candidates and using a weighted scheme over the kernel similarities
measurement to define the similarity between two images. The relaxations can be done
for example on the bin width in PMK, on the size of dictionary in usual BoVW framework
or on spatial grid definition in SPMK. Therefore, in this context two images are more
likely to be similar if they match at all levels of the relaxations.

Conclusions
This non-exhaustive review of the state-of-the-art in the field of object recognition and im-
age retrieval have mostly detailed the BoVW framework. The approach proposed in [SZ03]
have influenced most of the recent works in this field. The method has been decomposed
in four main stages: the construction of the visual dictionary, the feature quantization,
the image representation and finally the image comparison. We have then reviewed some
more recent work which have proposed improvements on the original method.

One of the limitation is the lack of spatial information in the final image representation.
The reviewed approaches have proposed the construction of a set of local histograms
according to a fix or data driven segmentation of the image. However, the integration of
the spatial information being done at the last stage of the framework is also dependent of
the quality of the quantization for single features.

We therefore have the feeling that incorporating spatial information before quantiza-
tion could be interesting. This idea will be developed in the next chapter by presenting
new semi-structural features for content description.



Chapter 9

Delaunay Graph Words

Introduction

The most successful approaches on object recognition rely on the Bag-of-Visual-Words
framework which has been presented in the previous chapter. In this framework, images
are represented by their distribution of visual words without taking into account any spa-
tial information. Recent performance improvements when testing on academic databases
have been achieved by adding spatial information within the Spatial Pyramid Match Ker-
nel [LSP06]. However, this approach relies on a fix partitioning of the image, which induces
its non invariance to affine transformations. This approach turned to be efficient when ap-
plied to most academic databases because they often represented centered objects within
their usual contexts. However, in our first person video recordings and considering daily
living objects that may be moved from one room to another, this approach does not seem
applicable. Another integration of spatial information was presented in [PCI+07], where
after applying a BoVW approach for retrieval the top ranked images where re-ranked by
applying a LO-RANSAC [CMO04] algorithm with affine model transformations.

At the other end of the spectrum of methods adressing the problem of object recog-
nition, the spatial information has often been incorporated by graph representation. The
most common idea is to build a graph model of an object, the recognition process consisting
in matching the prototype to a candidate one. In [RLYB10], a pseudo-hierarchical graph
matching has been introduced. Using local interest points, the pseudo-hierachical aspect
relies on progressively incorporating ”smaller” model features (in terms of scale) as the
hierarchy increases. The edges of the graph were defined accordingly to a scale-normalized
proximity criterion. The model graph is matched to a new scene by a relaxation process
starting from a graph model including only points of highest scale and adding smaller
model features during the matching process. In [LKHH10], the graph model was defined
according to locally affine-invariant geometric constraint. Each point is represented as an
affine combination of its neighboring points. Defining an objective function taking into
account both feature and geometric matching costs, the matching is solved by linear pro-
gramming. These approaches are efficient for object matching, however when dealing with
a large amount of image candidates, the matching process is too costly to be applied to
all images.

We believe that integrating spatial information with local interest points in a BoVW
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can be an elegant approach to overcome both the limitation of the BoVW framework
and of object matching in case of large scale retrieval. Therefore, we will present new
semi-structural approach for content description, by a bag of graph words.

9.1 New semi-structural features for content description

We present a method for integration of spatial information within the features by building
local graphs upon local interest points and aim to integrate these new semi-local features in
a BoVW framework. We will first detail the graph feature construction and then introduce
our layered approach. In order to integrate these features in a BoVW framework we define
a dissimilarity measure taking into account both nodes attributes and graph topology and
then introduce our clustering approach.

The experiments on our videos necessitating a large amount of annotations, we will
first evaluate the performances on academic databases that are relevant with regard to the
final task. This aims to validate our approach in experiments similar as those presented
in the literature before applying it to our videos. The application to videos has not been
finalized yet, we will only present results on academic databases in this thesis dissertation.

9.1.1 Graph feature construction

Let us consider a graph G = (X,E) with X a set of nodes corresponding to some feature
points xk,k=1,.,K , in image plane and E = {ekl},k=1,.,K,l=1,.,K , where ekl = (xk, xl), a set
of edges connecting these points. We call such a graph a “graph feature”. We will build
these features upon sets of neighboring feature points in image plane. Hence we propose
a spatial embedding of local features with graphs. In order to build such graphs two
questions have to be addressed:

• the choice of feature points sets X;

• the design of connectivity as edges E.

To define the feature point sets X upon which graphs will be built we are looking for a
set of feature points that we call the “seeds”. Around them, other feature points will be
selected to build each graph feature. Selected seeds have to form a set of SURF points
which are more likely to be detected in various instances of the same object. SURF points
are detected where local maxima of the response of the approximated Hessian determinant
are reached [BETVG08]. The amplitude of this criterion is a good choice for selecting the
seeds, as SURF points with higher response correspond to more salient visual structures
and are therefore more likely to be more repeatable. Hence, the seeds considered for
building the graphs will be the SURF points with highest responses. Considering a fixed
number of seeds NSeeds, we can define the set of seeds S:

S = {s1, . . . , sNSeeds} (9.1.1)

Given S, our aim is to add partial structural information of the object while keeping
the discriminative power of SURF key points. We will therefore define graphs over the
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seeds and their neighboring SURF points. Finding the k spatial nearest SURF neighbors
of each seed si gives the set of neighbors Pi:

Pi = {p1, . . . , pk} (9.1.2)

Hence the set of nodesXGi for each graph Gi is defined as the seed si and the neighbors
Pi, see (9.1.3). For the edges we use the Delaunay triangulation [She96] which is invari-
ant with regard to affine transformations of image plane preserving angles: translation,
rotation and scaling. Furthermore, regarding the future extensions of this work to video,
the choice of Delaunay triangulation is also profitable for its good properties in tracking
of structures [MBPB01]. The set of all vertices used for building the graph Gi is XGi , the
union of the seed and its neighborhood:

XGi =
{
xGi1 , . . . , xGik

}
= Pi

⋃
{si} (9.1.3)

For a graph G, a Delaunay triangulation is computed on the points of XG, building
triangles according to the Delaunay constraint i.e. maximizing minimal angle of the tri-
angulation. An edge eij = (xGi , xGj ) is defined between two vertices of the graph G if an
edge of a triangle connects these two vertices.

9.1.2 The nested layered approach

The choice of the number of nodes in a graph feature obviously depends on various factors
such as image resolution, complexity of visual scene, its sharpness... This choice is difficult
a priori. Instead we propose a hierarchy of ”nested” graphs for the same image, capturing
structural information increasingly and illustrate it in Figure 9.1.1. Let us introduce a
set of L ”layers”. We say that the graph Gli at layer l and the graph Gl+1

i at layer l + 1
are nested if the set of nodes of graph Gli is included in the set of nodes of graph Gl+1

i :
X l
i ⊂ X l+1

i . Note that, so defined, the number of graphs at each layer is the same.
Furthermore, in the definition (by construction) of graph features a node can belong to
more than one graph of the same layer. We still consider these graph features as separate
graphs.

Introducing this layered approach, where each layer adds more structural information,
we can define graphs of increasing size while moving from one layer to the next one. Each
layer has his own set of neighbors around each seed si and the Delaunay triangulation
is run separately on each layer. To avoid a large number of layers, the number of nodes
added at each layer should induce a significant change of structural information. To build
a Delaunay triangulation, at least two points have to be added to the seed at the second
layer. Adding one more node may yield three triangles instead of just one, resulting in
a more complete local pattern. Therefore, the number of nodes added from one layer to
the upper one is fixed to three. We define four layers, the bottom one containing only one
SURF point, the seed, and the top one containing a graph built upon the seed and its 9
nearest neighbors, see examples in Figure 9.1.2.
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Figure 9.1.1: The nested approach. Bottom to top: SURF seed depicted as the white
node, 3 neighbors graph where neighbors are in black, 6 neighbors graph and 9 neighbors
graph at the top level.

(a) SURF features (b) 3-nearest neigh-
bors graphs

(c) 6-nearest neigh-
bors graphs

(d) 9-nearest neigh-
bors graphs

Figure 9.1.2: SURF and graph features on a cropped image of the object ”ajaxorange”
from SIVAL database.
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9.1.3 Graph comparison

In order to integrate these new graph features in a Bag-of-Visual-Words framework a
dissimilarity measure and a clustering method have to be defined. In this section, we
define the dissimilarity measure. We are dealing with attributed graphs, where nodes can
be compared with respect to their visual appearance. Although it could be possible to
take into account similarities of node features only or the topology of the graph only, more
information can be obtained by combining both information for defining a dissimilarity
measure between local graphs. To achieve this we will investigate the use of the Context
Dependent Kernel (CDK) presented in [SARK08]. The definition of the CDK relies on two
matrices: D which contains the distances between node features, and T which contains the
topology of the graphs being compared. Considering two graphs A and B with respective
number of nodes m and n, let us denote C the union of the two graphs:

C = A⊕B

with
{
xCi = xAi for i ∈ [1..m] = IA

xCi = xBi−m for i ∈ [m+ 1..m+ n] = IB
(9.1.4)

with IA and IB, the sets of indices of each graph nodes.
The feature correspondence square matrix D of size (m + n) × (m + n) contains the

“entrywise” L2-norm (i.e., the sum of the squared values of vector coefficients) of the
difference between SURF features:

D = (dij)ij (9.1.5)

where dij =
∥∥∥xCi − xCj ∥∥∥2

The square topology matrix T of size (m+ n)× (m+ n) defines the connectivity between
two vertices xCi and xCj . In this work we define a crisp connectivity as we set Tij to one
if an edge connects the vertices xCi and xCj and 0 otherwise. Hence, only sub matrices
where both lines and columns in IA or IB are not entirely null. More precisely, we can
define sub matrices TAA and TBB corresponding to the topology of each graph A and B
respectively, while sub matrices TAB and TBA are entirely null, vertices of graphs A and
B are not connected.

T = (Tij)ij (9.1.6)

where Tij =
{

1 if edge (xCi , xCj ) belongs to A or B
0 otherwise

The CDK denoted K is computed by an iterative process consisting of the propagation
of the similarity in the description space according to the topology matrix.
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K(0) =
exp(−Dβ )∥∥∥exp(−Dβ )

∥∥∥
1

(9.1.7)

K(t) = G(K(t−1))∥∥G(K(t−1))
∥∥

1

G(K) = exp(−D
β

+ α

β
TK(t−1)T )

Where exp represents the coefficient-wise exponential and ‖M‖1 =
∑
ij |Mij | represents

the L1 matrix norm. The two parameters β and α can be seen respectively as weights for
features distance and topology propagation. Similarly to the definition of sub matrices in
topology matrix T we can define sub matrices in the kernel matrix K. The sub matrix
K

(t)
AB represents the strength of the inter-graph links between graphs A and B once the

topology has been taken into account. We can therefore define the dissimilarity measure
that will be used for clustering:

s(A,B) =
∑
{i∈IA, j∈Ib}

K
(t)
ij ∈ [0, 1] (9.1.8)

ρ(A,B) = s(A,A) + s(B,B)− 2s(A,B) ∈ [0, 1]

This dissimilarity measure will be applied separately on each layer. However, for the
bottom layer, since there is no topology to take into account for isolated points we will
use directly the “entrywise” L2-norm of the difference between SURF features denoted
by d. This corresponds to an approximation of the dissimilarity measure used for graphs
features by considering a graph with a single point. We prove this point following for
a pair of graph points A and B with features vectors xA and xB. The CDK K will be
constructed as :

K(0) =
exp(−D

β )∥∥∥exp(−D
β )
∥∥∥

1

where D =
(

0 d
d 0

)
(9.1.9)

LetE = exp(−D
β

) =
(

1 e−d/β

e−d/β 1

)

K(0) = E

‖E‖1
= E

2(1 + e−d/β)

When considering the dissimilarity measure from (9.1.8) and apply (9.1.9) we obtain :

ρ(A,B) = s(A,A) + s(B,B)− 2s(A,B)

ρ(A,B) = 2− 2e−d/β

2(1 + e−d/β)
= 1− e−d/β

1 + e−d/β
(9.1.10)

Now,
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Let t = d

β
, ifβ � d :

ρ(A,B) = 2e−t

(1 + e−t)2 |t=0 t+ o(t) ≈ d

2β (9.1.11)

Hence for degenerated graph features (points) the dissimilarity measure ρ(A,B) is
proportional to their distance in the L2 metric description space. Therefore the comparison
of degenerated graphs points with L2 norm of the difference of their feature vectors is
justified.

9.2 Visual dictionaries

The state-of-the-art approach for computing the visual dictionary of a set of features is
the use of the K-means clustering algorithm [SZ03] with a large number of clusters, often
several thousands. The code-word is either the center of a cluster or a non-parametric
representation like a K-Nearest Neighbors (K-NN) voting approach. These approaches
are not suitable for the graph-features because using the K means clustering algorithm
implies iteratively moving the cluster centers with interpolation and defining a mean graph
is a difficult task. Morevoer, a fast K-NN requires an indexing structure which is not
available in our graph feature space since it is not a vector space. Therefore, we present
in the following the method we choose for building the code book which is a two pass
agglomerative hierarchical clustering [Ser96]. The model of a cluster is chosen to be thus
its median instead of the mean.

9.2.1 Clustering method

In order to quantize a very large database, it can be interesting to use a two pass clustering
approach as proposed in [GCPF08], as it enables a gain in terms of computational cost.
Here, the first pass of the agglomerative hierarchical clustering will be run on all the
features extracted from training images of one object. The second pass is applied on the
clusters generated by the first pass on all objects of the database. To represent a cluster,
we use the following definition of the median:

median = argmin
G∈V

m∑
i=1
‖vi −G‖ (9.2.1)

With V – a cluster and vi – members of a cluster, G the candidate median and ‖ · ‖
being a distance or dissimilarity measure in our case. For the first pass, the dissimilarities
between all the features, of the same layer, extracted from all the images of an object
are computed. For the second pass, only the dissimilarities between all the medians of
all object clusters are computed. Each layer being processed independently, we obtain a
visual dictionary for each layer of graphs with 1, 3,. . . ,Nmax nodes.
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Figure 9.2.1: Flowchart of the Bag-of-Words framework applied to our multilayer features.

9.2.2 Visual signatures

The usual representation of an image in a BoVW approach is to compute a histogram of
all the visual words of the dictionary within the image. Each feature extracted from an
image is assigned to the closest visual word of the dictionary. We use this representation
without rejection, a feature is always assigned to a word in the dictionary. The signatures
are then normalized to sum to one by dividing each value by the number of features
extracted from the image. Once the visual signatures of images have been computed,
one can define the distance between two images as the distance between their visual
signatures. In preliminary experiments we have compared results when using Hamming
distance, Euclidean distance and L1 distance for this task. The L1 distance giving better
results, final results are presented using this measure only.

An overview of the proposed method is illustrated in Figure 9.2.1.

Conclusion
In this chapter, we have presented new graph features built upon SURF points as nodes
and expressing spatial relations between local key points. The multi-layer approach using
growing neighborhoods in several layers enables to capture the most discriminative visual
information for different types of objects.



Chapter 10

Experiments on Object
Recognition

Introduction

The final goal of the proposed method will be the application to our videos. However,
the videos from our corpora are very difficult due to strong motion and lighting changes.
Moreover, working with our videos would induce a heavy annotation cost in order to obtain
a amount of annotated objects which would be significant to evaluate our method.

Therefore, we propose to evaluate our approach on publicly available data sets. The
choice of the data sets are guided by the need of annotated object as this work only focus
on object recognition and not detection, and also by the representativity towards the final
task i.e. recognition of daily living objects in videos. We present the two selected data
sets in 10.1.

We will evaluate our method on a retrieval task i.e. having a query example of an
object, retrieve similar objects within the database. The details on the evaluation protocol
are given in 10.2.

Finally, the results of the experiments will be analyzed by comparing first the SURF
BoW approach with our proposition of graph words in 10.3 and then comparing both with
the results of the proposed nested approach in 10.4.

10.1 Data sets

To evaluate our method we needed to find public data sets with labeled objects. The
experiments were therefore conducted on two publicly available data sets with object an-
notations. The first one, the SIVAL (Spatially Independent, Variable Area, and Lighting)
data set [RGZ+05] includes 25 objects, each of them being present in 60 images taken in
10 various environment and different poses yielding a total of 1500 images. This data set
is quite challenging as the objects are depicted in various lighting conditions and poses.
It has also been chosen as the longer term perspective of this work is the recognition of
objects of the every day life that may appear in different places of a house, for example
a hoover that may be moved in all the rooms in one’s house. The second one is the well
known Caltech-101 [FFFP06] data set, composed of 101 object categories. The categories
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(a) DirtyWork-
Gloves

(b) Striper-
Notebook

(c) Glazed-
WoodPot

(d) GoldMedal (e) DirtyRun-
ningShoe

(f) Mandolin (g) Schooner (h) Canon (i) Airplanes (j) Kangaroo

Figure 10.1.1: Excerpts from image data sets. SIVAL (a)-(e), Caltech-101 (f)-(j)

are different types of animals, plants or objects. A snippet of both data sets is shown in
Figure 10.1.1a and b.

10.2 Evaluation protocol

We separate learning and testing images by a random selection. On each data set, 30
images of each category are selected as learning images for building the visual dictionaries
and for the retrieval task. Some categories of Caltech-101 have several hundred of images
when others have only a few more than 30. The testing images are therefore a random
selection of the remaining images up to 50. We only take into account the content of
a bounding box of each object as this work only deals with object recognition and not
localization yet. SURF key points of 64 dimensions are extracted within the bounding
box, the numbers of seeds for the graphs building process is fixed to 300. The second layer
corresponds to graphs built upon the seeds and their 3 nearest neighbors, the third layer
with the 6 nearest neighbors and the fourth and last layer with the 9 nearest neighbors.
For the CDK, α is set to 0.0001, β to 0.1 (ensuring K is a proper kernel) and the number of
iterations is fixed to 2, as H. Sahbi [SARK08] has shown that the convergence of the CDK
is fast. The first pass clustering compute 500 clusters for each object. The final dictionary
size varies in the range 50-5000. Each layer will yield its own dictionary. We compare our
method with standard BoVW approach. For that purpose, we use all the SURF features
available on all images of the learning database to build the BoVW dictionary. The visual
words are obtained by performing k-means clustering on the set of all these descriptors.
Each visual word is characterized by the center of a cluster.

The graph features are not built using all available SURF points, therefore to analyze
the influence of this selection, signatures are computed for the set of SURF which have
been selected to build the different layers of graphs. These configurations will be referred
to as SURF3NN, SURF6NN and SURF9NN corresponding respectively to all the points
upon which graphs with 3, 6 and 9 nearest neighbors have been defined. In this case, as
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for graphs, the dictionaries are built with our two-pass clustering approach.
For each query image and each database image, the signatures are computed for iso-

lated SURF and the different layers of graphs. We have investigated the combination
of isolated SURF and the different layers of graphs by an early fusion of signatures i.e.
concatenating the signatures. For SIVAL that concatenation has been done with the sig-
nature from the selected SURF corresponding to the highest level whereas for Caltech-101
we used the classical BoW SURF signature. Finally, the L1-distance between histograms
is computed to compare two images.

The performance is evaluated by the Mean Average Precision (MAP) measure. For
each test image, all images in the learning set are ranked from the closest (in terms of
L1 distance between visual signatures) to the furthest. The average precision AP aims to
evaluate how well the target images, i.e images of the same class as the query, are ranked
amongst the n retrieved images:

AP =
∑n
k=1 P (k)× rel(k)

cp

where rel(k) equals 1 when the kth ranked image is a target image and 0 otherwise
and cp is the total number of target images as defined in Table 7.2.1.The average precision
is evaluated for each test image of an object, and the MAP is the mean of these values
for all the images of an object in the test set. For the whole database we measure the
performance by the average value of the MAP i.e. we do not weight the MAP per class
by the number of query which would give more consideration to categories where more
testing images are present.

10.3 SURF based BoW vs Graphs Words

First of all, it is interesting to analyze if the graph words approach obtains similar per-
formances compared to the classical BoVW approach using only SURF features. This is
depicted in Figure 10.3.1, Figure 10.3.3 and 10.3.4 where isolated SURF points are de-
picted as dotted lines, single layer of graph words are dashed lines and the combination
of SURF and different graphs layers are plotted as continuous lines. At first glance, we
can see that for SIVAL isolated SURF features perform the poorest, separated layers of
graphs perform better and the combination of different layers of graphs and the SURF
features upon which the highest layer has been computed obtain the best performances.
Our clustering approach seems to give worse results for very small size of dictionaries but
better results for dictionaries larger than 500 visual words, which are the commonly used
configurations in BoVW approaches. Each layer of graph words performs much better
than the SURF upon which they are built. The introduction of the topology in our fea-
tures have a significant impact on the recognition performance using the same set of SURF
features.

The average performance hides however some differences in the performance of each
feature on some specific objects. To illustrate this we select two object categories where
graph features and SURF features give different performances in Figure 10.3.3 and Fig-
ure 10.3.4. For the object “banana” from SIVAL, the isolated SURF features outperform
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Figure 10.3.1: Average MAP on the whole SIVAL data set. Isolated SURF features are the
dotted curves, single layer Graphs Words are drawn as dashed curves and the multilayer
approach in solid curves.
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Figure 10.3.2: Average MAP on the whole Caltech-101 data set. Isolated SURF features
are the dotted curves, single layer Graphs Words are drawn as dashed curves and the
multilayer approach in solid curves.

the graph approach, see Figure 10.3.3. This can be explained as the “banana” object
represent a small part of the bounding box and is a poorly textured object. In some
environments the background is highly textured, this characteristics induce many SURF
points detected in the background and these SURF points may have a higher response than
those detected on the object. This will lead to the construction of many graph features
on the background and less on the object, see Figure 10.3.5. On the other hand, for the
“Faces” category from Caltech-101 the graphs features perform better, see Figure 10.3.4.
Here, the object covers most of the bounding box and many SURF points are detected. In
this situation, the graph features capture a larger part of the object than isolated SURF
points, making them more discriminative, see Figure 10.3.6.

This unequal discriminative power of each layer leads naturally to the use of the com-
bination of the different layers in a single visual signature.

10.4 The multilayer approach
The combination of graphs and SURF features upon which the graphs have been built is
done by the concatenation of the signatures of each layer. The three curves in solid lines
in Figure 10.3.1 correspond to the multilayer approach using only the two bottom layers
(SURF + 3 nearest neighbors graphs) in red, the three bottom layers (SURF + 3 nearest
neighbors graphs + 6 nearest neighbors) in green and all the layers in blue. For SIVAL,
the improvement in the average MAP is clear, and each addition of layer improves the
results. The average performance of the combination always outperforms the performance
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Figure 10.3.3: MAP for the object “banana” from SIVAL where isolated SURF features
(dotted curves) outperforms graphs (dashed curves). The multilayer approach is the solid
curve.

Figure 10.3.4: MAP for category “Faces” from Caltech-101 where graphs (dashed curves)
outperforms isolated SURF features (dotted curves). The multilayer approach is the solid
curves.
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Figure 10.3.5: 3 images from category “Banana” from SIVAL. Top: SURF features within
the bounding box. Bottom: graphs features.

Figure 10.3.6: 3 images from category “Faces” from Caltech-101. Top: SURF features
within the bounding box. Bottom: graphs features.
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of each layer taken separately.
For Caltech-101, see Figure 10.3.2, the average MAP values of all methods are much

lower which is not surprising as there are much more categories and images. Single layer of
graphs gives results in the range 0.050-0.061 while the classical BoVW framework on SURF
features performances are within 0.057-0.073 of average MAP values. The combination
of all layers outperforms here again SURF or graphs used separately with average MAP
values in the range of 0.061-0.077. The performance of single layers of graphs can be
explained as the fixed number (300) of seeds selection induces for Caltech-101 a strong
overlapping of graphs as the average number of SURF points within the bounding box is
only 427 when it was more than a thousand for SIVAL. This may give less discriminant
graph words as it will be harder to determine separable clusters in the clustering process.
This combined with the hard quantization used in the experiment can explained these
results.

The detailed results presented in Figure 10.3.3 and Figure 10.3.4 show that the com-
bination of the visual signatures computed on each layer separately performs better or at
least as well as the best isolated feature.

Conclusion
In this chapter we have evaluated the proposed graph word approach on two public
databases: SIVAL and Caltech-101. The recognition performance was shown to improve
by using both visual and topological information inside the graph features. Using growing
spatial neighborhood clearly improves the results while each layer taken separately yields
smaller improvements. Moreover, this approach introduces spatial information within the
features themselves and is therefore complementary and compatible with other recent im-
provements of the BoW framework that takes geometry into account, such as the Spatial
Pyramid Matching [LSP06].

The future of the work on object recognition is the application of the method to
the recognition of objects in videos. The approach could be enhanced by refining some
steps of the graphs construction and comparison. For instance, the selection of seeds
could be performed by an adaptive method and the topology matrix be defined with a
soft connectivity. In order to be efficient when processing a large amount of images, i.e.
in videos, an indexing structure should be used as that would speed up the recognition
process. A graph embedding procedure could be applied in order to use indexing structure
already existing for features represented by vectors.



Conclusion

In this part, we proposed a solution for object recognition that combines the advantages
of the BoVW approach and semi-structural representations. After reviewing and analyz-
ing the strength and limits of the BoVW approach, we have identified the high potential
of incorporating spatial context in this framework. As opposed to representations that
operate a quantization on low level local features, we proposed to exploit more struc-
tural features: local Delaunay graph words which extend local features with contextual
topological information.

This construction can keep the invariance properties with regard to planar affine trans-
formations. It also takes the advantage of the BoVW approach, by providing a final
descriptor that is efficient to index while incorporating information from medium level
features.

The experiments show the potential of our proposition in challenging image databases
that were chosen to include as much as possible the variability that can be encountered
in wearable videos.

Thanks to this encouraging properties, we believe that our proposition introduces a
promising paradigm that can be used in future works to improve the quality of object
recognition when applied to videos.
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Chapter 11

Conclusions and perspectives

Hence, in this PhD tightly related to the ANR-09-BLAN-0165-02 IMMED project, we
proposed solutions for video indexing according to the objective of recognition of activities
in videos recorded with wearable cameras.

The recognition of IADL, which are activities of high semantic level, required powerful
models. The HHMs, through the Markov property, are adapted for the video analysis.
Hence, we proposed two-level HHMM to model complex activities. The proposed model
is advantageous compared to a full Hierachical HMM since it does require training of a
lower number of parameters. In our method, the bottom-level HMM models non semantic
elementary activities with emitting states. The upper-level HMM models IADL as states
and transitions in between. Furthermore, the “temporal” dimension of video sequences
was taken into account by a motion-based pre-segmentation of the video stream into a
set of segments. This solution is an alternative to segmental HMMs requiring heavy
computational overload.

Many content descriptors from the literature reviewed in this manuscript were hardly
applicable in our context. Therefore we introduced a set of descriptors carrying more
information from the video stream such as motion, audio and visual clues. The experiments
conducted in a controlled environment and on a large-scale real world data set have shown
the efficiency of the method and the discriminative power of the proposed descriptors and
their combinations when enough representative learning data are available.

The interest of our approach resides in combining both low-level descriptors and mid-
level descriptors resulting from a pre-analysis of the stream (e.g. in audio or in localization)
. To go further in this direction to incorporate high-level semantic features, we considered
the detection of semantic objects. Their presence in video is strongly correlated with
activities.

We have therefore investigated the existing approaches for object recognition with the
aim to develop a robust method with regard to the challenging conditions of our videos.
The state-of-the-art methods for the task of object recognition can be categorized in two
main classes: i) BoVW related approaches which define a visual dictionary and represent
the image by the distribution of these visual words and ii) structural approaches mainly
using graph matching methods. The BoVW framework is very efficient when dealing
with large amount of data thanks to the indexing possibilities given by the visual words
distribution representation but is operating on very local features and most of the time
discards spatial information. The structural approaches describe an object as a whole
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graph which is very distinctive, but the application of graph matching to large data sets
is untractable.

We thus introduced new structural features on the basis of feature points. We proposed
to build local graphs by Delaunay triangulation, hence preserving invariance of local fea-
tures with regard to affine transformations of the image plane, and integrated these new
semi-local features in a BoVW framework yielding the definition of “graphs words”. A
layered approach, where each layer incorporates more structural information, has been in-
troduced. The application to two academic data sets has shown the higher discriminative
power of the proposed approach compared to a standard BoVW.

We believe that the definition of mid-level features (such as object detection) that cap-
tures partial semantics from the scene will help defining powerful contextual information
and hence lead to better recognition of activities. While adding more features, an evolu-
tion of the framework may become necessary. The definition of coherent and homogenous
description subspace should be done, and these newly created modalities could be modeled
separately.

The direct perspectives of this PhD research are obviously to adapt the object recogni-
tion method to wearable video content and its incorporation in the whole HMM framework.
Here several problems have to be addressed: how medical practitioners observe video con-
tent? What are the salient features for them? These questions on content saliency pose
interesting perspectives for bringing the object recognition techniques such as those pre-
sented to yield more semantic value on the analysis.

The second short-term perspective is in the question: can the global HMM framework
evolve towards a “flow of concepts”, leaving aside low-level features? In order to do this
we have to define coherent and homogeneous description subspaces such as “dynamic”,
“static”, etc. Then the fusion can be done by e.g. HMM in the decision space i.e. the
results of preliminary classifications.

The combination of our methodology with external observations and other sensors
fusion seems promising and is the subject of a starting European project Dem@Care,
which was initiated on the basis of the concept we proposed in this PhD.

In a further future, our system could evolve in a more proactive way. It would not
only observe and analyze the elderly people’s activities but also interact with them and
predict their further actions using the history of recognized activities, thus becoming an
advising tool.



Appendix

In this appendix we detail the methods for SIFT and SURF interest points detection and
description.

Details on SIFT
We will here detail each step of the SIFT points detection and description process.

Scale-space extrema detection The first stage of keypoint detection is to identify
locations and scales that can be repeatably assigned under differing views of the same
object. Detecting locations that are invariant to scale change of the image can be accom-
plished by searching for stable features across all possible scales. Lowe uses the Gaussian
function as the scale-space kernel. The scale space of an image is defined as a function,
L(x, y, σ), that is produced from the convolution of a variable-scale Gaussian, G(x, y, σ),
with an input image I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (11.0.1)

G(x, y, σ) = 1
2πσ2 exp

−(x2+y2)/2σ2 (11.0.2)

where ∗ is the convolution operation in x and y, and σ is the scale parameter. To effi-
ciently detect stable keypoint locations in scale space, Lowe used scale-space extrema in
the difference-of-Gaussian function convolved with the image, D(x, y, σ), which can be
computed from the difference of two nearby scales separated by a constant multiplicative
factor k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (11.0.3)
= L(x, y, kσ)− L(x, y, σ)

The maxima and minima of the scale-normalized Laplacian of Gaussian, σ2∇2G, pro-
duce the most stable image features compared to a range of other possible image functions,
such as the gradient, Hessian, or Harris corner function [MS02]. The difference-of-Gaussian
function D provides a close approximation to the scale-normalized Laplacian of Gaus-
sian [Lin94]. As illustrated in Figure 11.0.1, the difference-of-Gaussian function D can
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Figure 11.0.1: For each octave of scale space, the initial image is repeatedly convolved
with Gaussians to produce the set of scale space images shown on the left. Adjacent
Gaussian images are subtracted to produce the difference-of-Gaussian images on the right.
After each octave, the Gaussian image is down-sampled by a factor of 2, and the process
repeated. Image from [Low04].

be computed efficiently by simple image subtraction between smoothed images obtained
from the scale space image function L defined in (11.0.1). Each octave of scale space (i.e.,
doubling of σ) is divided into an integer number, s, of intervals, so k = 21/s.

In order to detect the local maxima and minima of D(x, y, σ), each sample point is
compared to its eight neighbors in the current image and nine neighbors in the scale above
and below (see Figure 11.0.2). It is selected only if it is larger or smaller than all of these
neighbors. The cost of this check is reasonably low due to the fact that most sample points
will be eliminated following the first few checks.

Keypoint localization and filtering

The local maxima and minima are key-points candidates but some of them may have low
contrast (and are therefore sensitive to noise) or are poorly localized along an edge. The
filtering of these poorly defnined key-points candidates is done by performing a detailed
fit to the nearby data for location, scale, and ratio of principal curvatures.

The computation of the detailed fit for location and scale uses the method developed
by Brown in [BL02] for fitting a 3D quadratic function to the local sample points to
determine the interpolated location of the maximum, and his experiments showed that
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Figure 11.0.2: Maxima and minima of the difference-of-Gaussian images are detected by
comparing a pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and
adjacent scales (marked with circles). Image from [Low04].

this provides a substantial improvement to matching and stability. His approach uses
the Taylor expansion (up to the quadratic terms) of the scale-space function, D(x, y, σ),
shifted so that the origin is at the sample point:

D(x) = D + ∂D

∂x

T

x + 1
2xT

∂2D

∂x2 x (11.0.4)

where D and its derivatives are evaluated at the sample point and x = (x, y, σ)T is
the offset from this point. The location of the extremum, x̂, is determined by taking the
derivative of this function with respect to x and setting it to zero, giving

x̂ = −∂
2D

∂x2

−1
∂D

∂x
(11.0.5)

The offset x̂ is added to the location its sample point to get the interpolated estimate
for the location of the extremum. A filtering of the keypoints obtained after extrema
localization is performed in order to keep the most meaningful keypoints. The function
value at the extremum, D(x̂), is useful for rejecting unstable extrema with low contrast.
Substituting equation (11.0.5) into equation (11.0.4), we have:

D(x̂) = D + 1
2
∂DT

∂x
x̂ (11.0.6)

Low contrast extrema, i.e. those with a value of |D(x̂)| < K with K a threshold value
are filtered out.
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Finally, points located on the edges, which yields a strong response of the Difference-
of-Gaussian function might be poorly located along the edges. A poorly defined peak in
the Difference-of-Gaussian function will have a large principal curvature across the edge
but a small one in the perpendicular direction. Keypoints that have a ratio between their
principal curvatures higher than a threshold are discarded. To evaluate this ratio a 2x2
Hessian matrix H is computed at the location and scale of the keypoint:

H =
[
Dxx Dxy

Dyx Dyy

]

The derivatives Dxx, Dyy and Dxy are estimated by taking differences of neighboring
sample points. The eigenvalues of H are proportional to the principal curvatures of D.
Since only the ratio r between the larger magnitude eigenvalue and the smaller one is
needed, the explicit computation of the eigenvalues can be avoided. Let α be the eigenvalue
with the largest magnitude and β the smaller one, so α = rβ. The sum of the eigenvalues
can be computed from the trace of H and the product from the determinant:

Tr(H) = Dxx +Dyy = α+ β

Det(H) = DxxDyy −D2
xy = αβ

Therefore to discard a keypoint which have large principal curvature across the edge
but a small one in the perpendicular direction, one only need to check the constraint
of (11.0.7) for a chosen value of r.

Tr(H)2

Det(H) = (α+ β)2

αβ
= (rβ + β)2

rβ2 = (r + 1)2

r

Tr(H)2

Det(H) <
(r + 1)2

r
(11.0.7)

Orientation assignment Invariance to image rotation is a desirable property for the
keypoint descriptors. By assigning a consistent orientation to each keypoint based on
local image properties, invariance to rotation is achieved. The method proposed by Lowe
for orientation assignment is the following: the scale of the keypoint is used to select the
Gaussian smoothed image L with the smallest scale so that all computations are performed
in a scale invariant manner. For each image sample, L(x, y) at this scale, the gradient
magnitude (11.0.8) and orientation (11.0.9) is precomputed using pixel differences:

m(x, y) =
√

(L(x− 1, y)− L(x+ 1, y))2 + (L(x, y − 1)− L(x, y + 1))2 (11.0.8)



147

θ(x, y) = arctan
L(x, y + 1)− L(x, y − 1)
L(x+ 1, y)− L(x− 1, y) (11.0.9)

The gradient orientations of sample points within a region around the keypoint are
collected into an histogram of 36 bins covering the full 360 degrees range of orientations.
Each sample added to the histogram is weighted by its gradient magnitude and by a
Gaussian-weighted circular window with a σ that is 1.5 times that of the scale of the
keypoint. The orientation assigned to the keypoint corresponds to the orientation of the
highest peak in the histogram. If any other peak in the histogram is within 80% of the
highest peak, a new keypoint is created with the same location and scale but with this
different orientation. Lowe experimented that even if multiple orientation assignment
is quite rare (about 15% of the keypoints) it contributes significantly to the stability of
matching. The orientation is accurately computed by fitting a parabola to the 3 histogram
values closest to the peak.

Keypoint description The previous steps have led to the computation of repeatable
stable keypoints which are assigned a location, scale and orientation. The method of
computation ensures robustness to affine transformations and noise in the image. The
next step is to compute a descriptor for the local image region that is highly distinctive
yet is as invariant as possible to remaining variations, such as change in illumination or 3D
viewpoint. The descriptor computation was inspired by the work of Edelman, Intrator, and
Poggio [EIP97], which have shown that in a model of biological vision, the perception of
3D objects is driven by the orientation and spatial frequency of gradients but the location
of the gradient is allowed to be shifted.

The computation of the keypoint descriptors is illustrated in Figure 4.3.2. First the
image gradient magnitudes and orientations are sampled around the keypoint location,
using the scale of the keypoint to select the level of Gaussian blur for the image. In
order to achieve orientation invariance, the coordinates of the descriptor and the gradient
orientations are rotated relative to the keypoint orientation. These are illustrated with
small arrows at each sample location on the left side of Figure 4.3.2. A Gaussian weighting
function with σ equal to one half the width of the descriptor window is used to assign a
weight to the magnitude of each sample point as illustrated by the circular window on the
left of Figure 4.3.2. The Gaussian weighting avoids sudden changes in the descriptor with
small changes of the position and decreases the influence of gradient samples that are far
from the center of the window.

The keypoint descriptor is shown on the right side of 4.3.2. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left
can shift up to 4 sample positions while still contributing to the same histogram on the
right, thereby achieving the objective of allowing for larger local positional shifts. The
descriptor is formed from a vector containing the values of all the orientation histogram
entries, corresponding to the lengths of the arrows on the right side of Figure 4.3.2. The
figure shows a 2x2 array of orientation histograms, whereas the original sampling for
SIFT descriptors is achieved with a 4x4 array of histograms with 8 orientation bins in
each. Therefore, the each keypoint is described using a 4x4x8 = 128 dimensional feature
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vector. The vector is normalized to unit length, being therefore invariant to contrast and
linear illumination changes. To cope with non-linear illumination changes which would
affect mostly large gradient magnitudes, Lowe reduces the influence of large gradient
magnitudes by thresholding the values in the unit feature vector to each be no larger than
0.2, and then renormalizing the descriptor vector to unit length.

Details on SURF
We will here first detail the idea and use of integral images and then review the whole
keypoint detection and description process of SURF.

Integral images Every entry of an integral image IΣ(x) is the sum of all pixels value
contained in the rectangle between the origin (top-left corner) to the current position
x = (x, y)T , equation (11.0.10). The integral image can be computed in linear time
using an incremental algorithm. With an integral image, the sum of intensities in any
rectangular region of the initial image can be computed in only three additions and four
memory accesses, see Figure 11.0.3. Hence, the calculation time is independent of the
rectangle size.

IΣ(x) =
i≤x∑
i=0

j≤y∑
j=0

I(i, j) (11.0.10)

Detection of keypoint SURF points detection relies on a Hessian-matrix approxima-
tion. Blob-like structures are detected at locations where the determinant of the Hessian-
matrix is maximum. Given a point x = (x, y) in an image I, the Hessian matrix H(x, σ)
in x at scale is defined as follows:

H(x, σ) =
[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
(11.0.11)

where Lxx(x, σ) is the convolution of the Gaussian second order derivative ∂2

∂x2 g(σ)
with the image I in point x, and similarly for Lxy(x, σ) and Lyy(x, σ). The computation
of Gaussian convolutions of parts of discrete images necessarily results in an approxi-
mation. Bay proposed to use box-filters, which is a stronger approximation, but has a
computational cost independent of size filters using integral images. This box-filter ap-
proach shows performances which are comparable or better in terms of repeatability with
regard to rotation than with the discretised and cropped Gaussians. The 9x9 box filters
in Figure 11.0.4 are approximations of a Gaussian with σ = 1.2 and represent the lowest
scale (i.e. highest spatial resolution) for computing the blob response maps. The approx-
imate Gaussian second order derivative computed with box filters are denoted Dxx, Dyy

and Dxy. The determinant of the Hessian-matrix is expressed in (11.0.12) where w is a
relative weight of filter responses used to balance the expression for the Hessian’s deter-
minant. This is needed for the energy conservation between the Gaussian kernels and the
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Figure 11.0.3: Using integral images, it takes only three additions and four memory ac-
cesses to calculate the sum of intensities inside a rectangular region of any size. Image
from [BETVG08].

Figure 11.0.4: Left to right: the (discretised and cropped) Gaussian second order partial
derivative in y- (Lyy) and xy-direction (Lxy), respectively; Bay’s approximation for the
second order Gaussian partial derivative in y- (Dyy) and xy-direction (Dxy). The grey
regions are equal to zero. Image from [BETVG08].
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approximated Gaussian kernels. The filter responses are normalized with respect to their
size. The approximated determinant of the Hessian represents the blob response in the
image at location x. These responses are stored in a blob response map over different
scales.

det(Happrox) = DxxDyy − (wDxy)2 (11.0.12)

The method for SIFT key-points presented by Lowe needs the computation of convolu-
tions at different scales. More precisely, in the work of Lowe the scale space is represented
as a pyramid of images resulting from convolutions of the original image with Gaussian
filters of growing σ and then sub-sampled. The layers of the pyramid are subtracted in
order to get the DoG (Difference of Gaussians) images where edges and blobs can be found.

The scale space is divided into octaves. An octave represents a series of filter response
maps obtained by convolving the same input image with a filter of increasing size. Each
octave is subdivided into a constant number of scale levels. In total, an octave encompasses
a scaling factor of 2. Finally, in order to localize interest points in the image and over
scales, a non-maximum suppression in a 3x3x3 neighborhood is applied.

Orientation assignment

SURF keypoint are assigned an orientation to ensure rotation invariance. The Haar
Wavelet response to x and y directions are computed in a circular windows of size 6s
around the interest point, with s the scale of the keypoint. Using integral images, Haar
Wavelet are computed efficiently as only six operations are needed to compute the response
in x or y direction at any scale. The wavelet responses are weighted with a Gaussian of
σ = 2s centered at the interest point. The dominant orientation is estimated by calculating
the sum of all responses within a sliding orientation window covering an angle of π/3.

Keypoint description

The extraction of the descriptor is done considering an oriented square window centered
at the interest point of size 20s, Figure 4.3.4. This region is split up into 4x4 sub-regions.
The Haar wavelet response in the horizontal and vertical direction (with respect to the
keypoint orientation) are computed within each sub-region. The responses are weighted
with a Gaussian σ = 3.3s centered at the interest point to increase robustness. Then, each
sub-region yields a feature vector of size 4 consisting of the sum of the wavelet responses
in the x and y directions, and the sum of the absolute value of the wavelet responses in
the x and y directions. If we note dx, dy the wavelet responses, the feature vector for a
sub-region is x = (

∑
dx,

∑
dy,

∑
|dx| ,

∑
|dy|), Figure 11.0.5. The total SURF descriptor

hence is a 4x4x4 = 64-dimensional feature vector. The descriptor is normalized to the unit
vector to ensure invariance to contrast. An extended version of the SURF descriptor can
be computed by summing the positive and negative wavelet responses separately. The
extended feature vector is hence of size 128.
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Figure 11.0.5: The descriptor entries of a sub-region represent the nature of the underlying
intensity pattern. Left: In case of a homogeneous region, all values are relatively low.
Middle: In presence of frequencies in x direction, the value of

∑
|dx| is high, but all

others remain low. If the intensity is gradually increasing in x direction, both values∑
dx and

∑
|dx| are high.
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